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Abstract

Population differences in risk of disease are common, but the potential genetic basis for

these differences is not well understood. A standard approach is to compare genetic risk

across populations by testing for mean differences in polygenic scores, but existing studies

that use this approach do not account for statistical noise in effect estimates (i.e., the GWAS

betas) that arise due to the finite sample size of GWAS training data. Here, we show using

Bayesian polygenic score methods that the level of uncertainty in estimates of genetic risk

differences across populations is highly dependent on the GWAS training sample size, the

polygenicity (number of causal variants), and genetic distance (FST) between the popula-

tions considered. We derive a Wald test for formally assessing the difference in genetic risk

across populations, which we show to have calibrated type 1 error rates under a simplified

assumption that all SNPs are independent, which we achieve in practise using linkage dis-

equilibrium (LD) pruning. We further provide closed-form expressions for assessing the

uncertainty in estimates of relative genetic risk across populations under the special case of

an infinitesimal genetic architecture. We suggest that for many complex traits and diseases,

particularly those with more polygenic architectures, current GWAS sample sizes are insuffi-

cient to detect moderate differences in genetic risk across populations, though more sub-

stantial differences in relative genetic risk (relative risk > 1.5) can be detected. We show that

conventional approaches that do not account for sampling error from the training sample,

such as using a simple t-test, have very high type 1 error rates. When applying our approach

to prostate cancer, we demonstrate a higher genetic risk in African Ancestry men, with lower

risk in men of European followed by East Asian ancestry.

Author summary

Many diseases and complex traits, such as prostate cancer, exhibit differences in incidence

across populations. Yet the potential contribution of genetic factors towards such
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disparities is unclear. Polygenic scores summarise genetic effects across the genome and

can in principle provide a valuable tool for assessing and comparing disease risk across

populations. In practise, current approaches based on polygenic scores assume that such

scores perfectly measure genetic risk of disease without measurement error, and thus do

not account for uncertainty that arises in the construction of the score from a finite

genome-wide association study (GWAS) training sample, which can be substantial. We

introduce a Bayesian approach based on the LDpred2 polygenic score model that accounts

fully for training sample uncertainty, and we propose a Wald test for formally testing such

genetic risk differences across populations. Simulations show that the method properly

controls for type 1 errors assuming independent SNPs (achieved by pruning), and that

statistical power is sensitive to both the genetic architecture (heritability and polygenicity)

and training sample size. In application to prostate cancer, this framework enables us to

identify a higher genetic risk in African Ancestry men, with lower risk in men of Euro-

pean followed by East Asian ancestry.

Introduction

An important open question in genetics is the degree to which population differences in dis-

ease risk can be attributed to differences in genetic risk. This question has recently been con-

sidered for several diseases and complex traits [1–7] including prostate cancer [8].

One commonly performed approach uses t-tests and ANOVA to examine differences in

mean polygenic scores. Using this method, Conti et al. [8] estimated a 2.18-times higher

genetic risk for prostate cancer in African men in comparison with European ancestry men,

and a 0.73-times lower genetic risk in East Asian compared to European ancestry men. Simi-

larly, Morris et al. [9] found evidence of a higher genetic risk of lupus in East Asian compared

to most other global populations. In each case, using polygenic scores, the authors have drawn

strong conclusions about differences in disease risk being attributable to different underlying

genetic risk profiles.

However, we argue that these approaches are problematic, because they do not account for

uncertainty that arises in the construction of the polygenic score itself. In effect, using t-tests

and ANOVA approaches in this manner assumes that polygenic scores measure genetic risk of

disease without any measurement error. This would be appropriate for estimating the accuracy

of a given polygenic score between populations, such as to assess prospects for risk prediction.

However for inference about the underlying genetic risk, we must allow that polygenic scores

are derived from a finite sample of GWAS training data, and as shown previously [10–12],

genetic risk estimates based on polygenic scores carry large amounts of uncertainty which

should be accounted for in subsequent analyses.

To better understand and explain this source of uncertainty from the GWAS training data,

consider a scenario where we repeatedly perform a GWAS analysis, and then create polygenic

scores and calculate their mean difference between two population samples. Then across such

repeats there will be variation in the estimates of genetic risk difference. This variation will,

among other factors, be dependent upon the initial GWAS sample size. Since previous studies

do not account for such inferential variation from the GWAS training data, one can question

the certainty of conclusions drawn.

To address this issue, we develop a framework for estimating the genetic contribution to

the relative risk of disease across populations that accounts for uncertainty in the construction

of the polygenic score. We examine how the uncertainty in estimates of relative genetic risk
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across populations depends on the genetic architecture of the disease, the training sample size,

and the genetic distance (FST) between populations compared. We further derive a Wald test

statistic for formally testing differences in genetic risk across populations, which we show to

have good control of type 1 errors under a simplified assumption of independent SNPs, which

in practise we achieve through a pruning approach. We stress that future research should seek

to extend this method further to account for the realistic effects of linkage disequilibrium (LD)

and imperfect tagging. Finally, we also re-analyse GWAS summary data from Conti et al. [8]

on prostate cancer using a genome-wide polygenic score derived using LDpred2 [13], ensuring

that uncertainty in the training sample is taken into account.

Description of the Method

Bayesian approach to estimating relative risk for populations

We use a Bayesian approach to estimating relative genetic risk across populations. Let yi be a

trait measured on the ith individual, xi an M × 1 vector of genotypes (equal to 0, 1 or 2) and β
an M × 1 vector of per-allele effects for each genetic variant. We consider a linear model

yi ¼ xTi βþ �i. The genetic effects are estimated as β̂GWAS, denoting the marginal estimates

from GWAS summary statistics. We use the Bayesian approach of LDpred2 [13], which

assumes the effects at SNP j are drawn from a mixture distribution, where fj denotes the allele

frequency in the training sample:

bj �
N 0;

h2
g

Mpcausal½2fjð1 � fjÞ�

 !

; with probability pcausal

0;with probability 1 � pcausal

8
><

>:

By combining the prior distribution pðβjh2
g ; pcausalÞ and the likelihood of the observed data

pðβ̂GWASjβÞ, we can compute a posterior distribution as pðβjβ̂GWAS; h2
g ; pcausalÞ. We use ~β �

pðβjβ̂GWAS; h2
g ; pcausalÞ to refer to the samples from the posterior distribution. The genetic value

for individual i is estimated through the Bayesian polygenic score, defined as

^PGSi ¼ xTi E½βjβ̂GWAS; h2
g ; pcausal�.

Suppose further that we wish to find the relative genetic risk between two populations. We

assume that the genetic effects are the same in both populations, so that differences in genetic

risk arise only from differences in allele frequencies. Let the allele frequencies for variant j be fj
and gj in populations 1 and 2. Using the result derived by Conti et al. [8], the relative risk com-

paring population 1 versus population 2 is RR = exp [d], where the difference d in mean

genetic risk (on the log scale) across the populations is given by:

d ¼ E½xT
1
β� � E½xT

2
β� ¼

XM

j¼1

2ðfj � gjÞbj

Next, we demonstrate that the posterior variance, var½djβ̂GWAS; h2
g ; pcausal� can be evaluated

analytically under a simplified assumption where all SNPs are assumed independent. Under

the non-infinitesimal model, we have derived analytical expressions for the posterior variance

of individual SNP effect sizes var½bjjb̂GWAS;j; h2
g ; pcausal� (see S1 Appendix). Using these, and
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under the assumption of independent SNPs, the posterior variance of d can be expressed as:

var½djβ̂GWAS; h
2

g ; pcausal� ¼
XM

1
4ðfj � gjÞ

2var½bjjb̂GWAS;j; h
2

g ; pcausal� ð1Þ

We demonstrate the validity of our analytical expressions for the posterior variance of d
through comparisons with LDpred2-auto for a range of genetic architectures and GWAS

training sample sizes (S1 Fig).

For the case of an infinitesimal model, we show further that the analytical form can be

approximated by a simple closed-form expression (see S2 Appendix):

var½djβ̂GWAS; h
2

g � �
4MFST

N
1þ

M
Nh2

g

 !� 1

ð2Þ

We demonstrated the validity of the closed-form analytical expressions for the posterior

variance of d through comparisons with LDpred2-grid (with pcausal set to 100%), showing the

formula has the correct functional dependence with each of the parameters h2
g ; M;N and FST

(S2 Fig).

Additionally, to test for differences in genetic risk across populations, we consider a Wald

test on the posterior mean estimator d̂ ¼ E½djβ̂GWAS; h2
g ; pcausal� (S3 Appendix).

Verification and comparison

Simulation study

We simulated a range of genetic architectures and training sample sizes to understand the

expected levels of uncertainty in estimates of d. To ensure our simulations were tractable at

large samples, we simulated GWAS summary statistics, rather than individual-level pheno-

types and genotypes.

Summary statistics were simulated using a wide range of values of SNP-heritability h2
g , poly-

genicity pcausal, genetic differentiation FST, and effective training sample size Neff. We assumed

the genetic architecture could be described by a set of M = 200,000 SNPs, which were indepen-

dent (i.e., in linkage equilibrium) and directly genotyped in both populations. This best-case

scenario gives a lower bound on the uncertainty expected in real data applications.

We generated allele frequencies using a version of the Balding-Nichols model [14] where

we assume that the ancestral allele frequency is unknown [15]. We assume a simplified model

where all SNPs are independent. For each SNP, the allele frequency fj in the first population

was drawn from the uniform distribution on [0.1,0.9], and the allele frequency gj of the second

populations was drawn from a beta distribution with parameters fj(1–2FST)/2FST and (1–fj)(1–

2FST)/2FST.

We considered a range of genetic architectures: a heritability h2
g of 0.05, 0.10, 0.25, 0.50,

0.80, polygenicity pcausal of 0.1%, 1%, 10%, and 100%, genetic differentiation FST of 0.02, 0.04,

0.06, 0.08, 0.10 and 0.12, and we varied the effective sample size Neff between 103 and 108.

For each simulation replicate, SNP effect sizes were drawn from the non-infinitesimal mix-

ture model, based on the allele frequencies of population 1:

bj �
N 0;

h2
g

Mpcausal½2fjð1 � fjÞ�

 !

; with probability pcausal

0;with probability 1 � pcausal

8
><

>:
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and marginal effect estimates were drawn from [16]:

b̂GWAS;jjbj � N bj;
1

2Nfjð1 � fjÞ

 !

where it was assumed that the effect sizes are estimated based on samples predominantly taken

from population 1. We used the derived analytical expressions to efficiently evaluate the poste-

rior mean and variance of d without recourse to MCMC simulations, where we set pcausal and

h2
g equal to their true values. For each set of parameters, we estimated the expected posterior

variance of d by averaging results across 100 summary statistic replicates. The steps for per-

forming this simulation study are provided in S5 Appendix.

Additionally, for each set of parameters, we evaluated the expected sampling variance, bias

and mean square error of the posterior mean d̂, also by averaging across 100 simulations. The

steps of this simulation study evaluating the properties of d̂ are provided in S6 Appendix.

To understand the type 1 error for our Wald test on d̂, we generated χ2-test statistics for

each simulation under the null hypothesis d = 0. We also evaluated the statistical power of the

Wald test, where we simulated from scenarios corresponding to a relative risk (RR = exp [d])

of 1.1, 1.2, 1.5 and 2, whilst varying both the training sample size and genetic architecture. We

also evaluated the type 1 error of the t-test, where we varied the target sample size between

5,000, 10,000, 20,000, and 100,000 for both of the two target populations. For statistical power

and type 1 error calculations, we used 1,000 simulation replicates. The steps of this simulation

study for evaluating the type 1 error and power of the Wald test are also provided in

S6 Appendix.

Results

The main expressions derived above are the Bayesian posterior variance of the difference in

polygenic scores between populations, and in particular, the closed-form expression for this

variance under an infinitesimal model. Here we explore the properties of the posterior vari-

ance and use simulations to confirm the derived expressions.

Posterior variance of genetic relative risk

We illustrate the impact of the training sample size and genetic architecture on estimating the

genetic relative risk (RR = exp [d]) between populations using a range of summary statistic

simulations. The uncertainty in estimates of genetic relative risk across populations, as charac-

terised by the posterior standard deviation s.d.(d), is presented in Fig 1.

First, we fixed the training sample size, heritability, and genetic distance (FST) and varied

the levels of polygenicity. We found that the uncertainty in estimates of genetic relative risk

across populations increased sharply with the level of polygenicity. When we simulated sum-

mary statistics for a scenario where N = 100,000, h2
g = 0.50 and FST = 0.10 (FST = 0.10 is typical

differentiation between divergent continental populations, such as European and African pop-

ulations), the uncertainty s.d.(d) ranged from 0.04, 0.15, 0.35 to 0.40 when the proportion of

causal variants varied from 0.1%, 1%, 10% to 100%, respectively.

Additionally, the level of uncertainty in estimates of genetic relative risk under an infinitesi-

mal genetic architecture (pcausal = 100%) was relatively high, even at very large sample sizes.

Simulating summary statistic data with pcausal = 100%, h2
g = 0.50 and FST = 0.10, we found that

the uncertainty s.d.(d) decreased from 0.37 to 0.24, as the training sample size increased from

200,000 to 1,000,000.
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The level of uncertainty s.d.(d) also increased with genetic distance FST. For example, in the

scenario where N = 100,000, h2
g = 0.50 and pcausal = 10%, when we varied FST between 0.02,

0.06 and 0.10, the corresponding uncertainty s.d.(d) was 0.18, 0.31 and 0.40, respectively.

Closed-form approximation under infinitesimal model

As shown in Eq (2) above, we further derived a closed-form analytical estimate of the variance

of d = log(RR) under an infinitesimal genetic architecture, where it is assumed that every SNP

has effect sizes drawn from bj � Nð0; h2
g=½2Mfjð1 � fjÞ�Þ (see methods and S2 and S3 Appendi-

ces). We examined the accuracy of this closed-form estimate where the true model was in fact

non-infinitesimal, varying both the heritability and polygenicity (Fig 2).

Fig 1. Estimates of posterior s.d.(d) based on simulations. Heritability is held constant at h2
g ¼ 0:50.

https://doi.org/10.1371/journal.pgen.1011212.g001

Fig 2. Closed-form analytical estimator of posterior s.d.(d) from infinitesimal model compared with average posterior s.d.(d) from summary statistic

simulations. The x-axis is the average posterior s.d.(d) from summary statistic simulations. The y-axis is the expected posterior s.d.(d) computed with Eq (2).

Each dot represents the average of 100 simulations replicated for each pcausal. The number of causal variants was fixed at M = 200,000, the genetic

differentiation FST was fixed at 0.10, the GWAS training sample size N was fixed at 100,000.

https://doi.org/10.1371/journal.pgen.1011212.g002
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We found the closed-form estimates were broadly comparable with the expected variance

for levels of true polygenicity between 10% and 100%, although there were clear overestimates

of the posterior variance when the true polygenicity was below 10%. For instance, for a herita-

bility of h2
g = 0.50, genetic distance FST = 0.10, and training sample size N = 100,000, the

closed-form approximation gave s.d.(d) = 0.40. Meanwhile, when we simulated summary sta-

tistics and used the analytic form of the posterior variance per-SNP (see S1 Appendix), we esti-

mated s.d.(d) as 0.04, 0.15, 0.35 and 0.40 as we varied the polygenicity between 0.1%, 1%, 10%

and 100%, respectively.

This suggested that for genetic architectures with low polygenicity, we should instead use

analytical estimates of the posterior variance per-SNP (see S1 Appendix) or MCMC simula-

tions to derive the posterior distribution of d, rather than the closed-form approximation of

Eq (2).

Assessment of type 1 error, statistical power and bias

Additionally, we assessed the frequentist properties of the Bayesian posterior mean estimator

d̂, with results presented for a range of scenarios in Figs 3 and 4.

First, having derived a Wald test statistic that accounts for uncertainty relating to the train-

ing sample, we demonstrated that this test is well-calibrated, having the expected type 1 error

rates (Fig 3). In comparison to our Wald test, we noted that the t-test has very high type 1

error rates unless the training sample size is very large. For example, performing a t-test using

a target sample size of N = 5,000 for both of the populations, and assuming a genetic architec-

ture with h2
g = 0.50, pcausal = 10% and genetic distance FST = 0.10, we note that a training sample

size in excess of 108 is needed to achieve a type 1 error of 0.05. We additionally observed that

the t-test has the property of being particularly sensitive to scenarios where the target sample

size is large relative to the training sample. In these cases, while the training sample may be

large enough to provide a precise polygenic score, the t-test is still able to detect differences in

population means that are due to residual sampling error from the construction of the poly-

genic score (relating to the training sample size), even when no true difference exists. This

leads to an unintuitive finding that the type 1 error can be better controlled for the t-test at

smaller target samples sizes. Nonetheless, the type 1 error rates for the t-test remain uniformly

higher than the Wald test (Fig 3).

Second, we estimated the statistical power of the Wald test using simulations, with results

for a range of typical scenarios presented in Fig 4A, where we fixed the heritability at h2
g = 0.50

and the genetic distance at FST = 0.10, and estimated the power for a true relative risk (exp [d])

between 1.1, 1.2, 1.5 and 2. We found a strong dependence between the statistical power and

proportion of causal variants, pcausal. For a training sample size of N = 100,000, and assuming a

true relative risk of RR = 1.5 (d = log (1.5)), the estimated power of the Wald test varied

between 1.00, 0.79, 0.18 and 0.07 as the polygenicity increased from 0.1%, 1%, 10% to 100%,

respectively. Fixing the polygenicity at pcausal = 10% (typical of most complex trait genetic

architectures), for a training sample size of N = 100,000, the power was estimated as 0.11, 0.13,

0.18 and 0.34 as we varied the true relative risk (exp [d]) between 1.1, 1.2, 1.5 to 2, respectively.

Moreover, for the same polygenicity pcausal = 10% and a very large training sample size of

N = 1,000,000, the power was estimated as 0.20, 0.40, 0.91 and 1.00 as we increased the true rel-

ative risk (exp [d]) between the values 1.1, 1.2, 1.5 and 2, respectively.

Third, we considered the bias and mean square error for the posterior mean estimator d̂,

showing the bias-variance trade-off for a typical scenario in Fig 4B. For this example, the heri-

tability was fixed at h2
g = 0.50 and the genetic distance at FST = 0.10, while in this case the true
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genetic relative risk was fixed at RR = 1.5 (d = log(1.5)). We varied the training sample size and

the proportion of causal variants pcausal. We note that since the posterior mean d̂ is a shrinkage

estimator, at small training sample size the shrinkage is substantial and the bias very high.

Hence, we observed in Fig 4B that the sampling variance of d̂ is low at small training sample

sizes as the estimates of d̂ are drawn towards zero, whilst at the highest training sample size the

sampling variance is proportional to 1/N, and between these extremes at intermediate sample

sizes the combination of shrinkage and sampling error results in higher sampling variance.

Additionally, the estimator is asymptotically unbiased, with the mean square error consistently

converging to zero at large training sample sizes. Moreover, the rate that the bias converges to

Fig 3. Type 1 error rates for the Wald test and t-test. Simulation study estimates of the type 1 error rates for a Wald test and t-test of size α = 0.05. Heritability

is held constant at h2
g ¼ 0:50, genetic distance FST fixed at 0.10. Polygenicity, and training and target sample sizes are varied as shown. The grey line represents

the size α = 0.05.

https://doi.org/10.1371/journal.pgen.1011212.g003
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zero is slower for genetic architectures with higher polygenicity pcausal. For a typical genetic

architecture with pcausal = 10%, we observe visually that the bias remains high even at training

samples of N = 100,000, falling rapidly at sample sizes of N = 1,000,000 and above.

Fig 4. Frequentist properties of the Bayesian posterior mean d̂ for a range of scenarios. (A) Statistical power for the Wald test with size α = 0.05. Heritability

is held constant at h2
g ¼ 0:50, genetic distance FST fixed at 0.10. (B) Mean square error (MSE), bias (squared), and sampling variance of d̂ . Heritability is fixed at

h2
g ¼ 0:50, genetic distance FST at 0.10, and true genetic relative risk RR = exp [d] fixed at 1.5.

https://doi.org/10.1371/journal.pgen.1011212.g004
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Applications

Case study: Prostate cancer in PRACTICAL Consortium

We provide a real data example based on the analysis performed by Conti et al. [8], which esti-

mated the difference in genetic risk of prostate cancer across European, Hispanic, South

Asian, and African populations. We used summary statistics obtained from the multi-ancestry

analysis which included 107,247 cases and 127,006 controls. We estimated the mean genetic

risks based on allele frequencies from the control groups of each population within the PRAC-

TICAL consortium. We used a set of 1,444,196 HapMap3+ SNPs [17], which we further fil-

tered to a set of 234,822 approximately independent SNPs through clumping using the African

(AFR, N = 504) population within the 1000 Genomes project [18] (1KGP), where we clumped

based on allele frequency using the bigsnpr R package [19] snp_clumping command with r2 <

0.1 and 1,000-kb windows.

As we did not have access to a test dataset for parameter tuning, we generated the PGS

model using LDpred2-auto [13], also implemented using the bigsnpr R package [19]. This

approach estimates hyperparameters from the training data, namely the proportion of causal

variants pcausal, and the SNP-heritability h2
g . We used LDpred2-auto to generate the polygenic

score using a Gibbs sampling chain with 3,000 iterations after 1,000 burn-in, with SNP effect

sizes averaged across all chains. We used 30 initial values for pcausal, ranging from 10−4 to 0.9.

We computed the initial h2
g from the snp_ldsc function. We filtered chains by comparing the

scale of the resulting predictions as described in the LDpred2 vignette (bigsnpr, version

1.12.2). Moreover, since the training sample was composed predominantly of European ances-

try participants, we used the default EUR reference panel from UK Biobank, provided by Privé

et al. [17]. Using the posterior samples ~βð1Þ; ~βð2Þ, . . ., ~βð3;000Þ (returned using the report_step = 1

argument in the snp_ldpred2_auto command), we generated posterior samples ~dð1Þ; ~dð2Þ, . . .,

~dð3;000Þ comparing the mean difference in genetic values for European, Hispanic, South Asian

and African ancestries, where the allele frequencies were based on the control group in each

population. We evaluated the posterior mean and variance of d by averaging across these pos-

terior samples. Finally, using our Wald test, we computed χ2-statistics and corresponding P-

values for comparing the difference in genetic risk across each pair of populations. We also

used our simulation approach (S6 Appendix) to evaluate the statistical power available for

identifying genetic risk differences of a range of magnitudes (relative risk, RR varied between

1.1, 1.2, 1.5, 2), given the genetic architecture (h2
g and pcausal), effective sample size N, and

genetic distance FST for each population comparison.

The relative risk estimates across populations are shown in Table 1, where we compared

results from our Wald test with those based on the t-test analysis performed previously [8].

The hyperparameters were estimated as h2
g = 0.13 and polygenicity pcausal = 0.34%. In compari-

son to the mean genetic risk for men of European ancestry, we estimated that men of African

ancestry had relative risks of 2.99 (95% credible interval, 1.32–6.78, P = 2x10-3), while men of

East Asian ancestry and Hispanic men had relative risks of 0.46 (95% CI, 0.18–1.19, P = 0.05)

and 0.82 (95% CI, 0.60–1.12, P = 0.17), respectively. Hence, we found broadly similar point

estimates to the original Conti et al. [8] analysis, with greater uncertainty that reflects account-

ing for the GWAS training sample size.

We further considered the statistical power available for analysing each of these contrasts

using our Wald test, given the observed genetic architecture, effective sample size and genetic

distance across populations (Table 1). Using our simulation approach (S6 Appendix), we fixed

h2
g = 0.13, pcausal = 0.34, and the effective sample size at N = 232,586. For the comparison of

European and African populations, using our derived estimator for FST (S4 Appendix) which
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gave FST = 0.12, we estimated the power to be 0.46, 0.84 and 1.00 for identifying a genetic rela-

tive risk of 1.1, 1.2 and 1.5, respectively, showing the test to be well-powered. Similar results

were found for the comparison of European and East Asian populations, as the population dis-

tance was also estimated as FST = 0.12. Additionally, for the comparison of European and His-

panic populations, we found FST = 0.02, which led to estimates of power of 0.94 and 1.00 for

identifying a genetic relative risk of 1.1 and 1.2, respectively, hence our Wald test for this con-

trast was also well-powered.

Case study: UK Biobank

We provide a further realistic application of our method to assess the impact of the pruning

procedure on the accuracy of s.d.(d). We considered a set of 28 diseases and complex traits

from UK Biobank, which we based approximately on sets of phenotypes compiled in previous

studies [20,21], which were representative of a diverse range of genetic architectures. We used

summary statistics from GWAS conducted from Neale Lab (nealelab.is/uk-biobank), which

were derived from N = 361,194 individuals of white-British ancestry. For these phenotypes, we

evaluated s.d.(d) using the pruned set of 234,822 SNPs defined above (r2 < 0.1 and 1,000-kb),

where we compared the risk differences across European and African populations. We com-

puted s.d.(d) using LDpred2-auto with 3,000 iterations after 1,000 burn-in. For the hyperpara-

meters pcausal and h2
g estimated using LDpred2-auto, we further computed s.d.(d) using Eq (1),

which assumes SNPs are independent. This enabled us to assess how sensitive our estimates of

s.d.(d) were to any residual correlation that remains across SNPs after the pruning process.

The results for this sensitivity analysis in UK Biobank are presented in Fig 5 and S1 Table.

As expected we observed that using Eq (1), which assumes independence between SNPs, there

were slightly higher estimates of posterior standard deviation s.d.(d) than those obtained from

the LDpred2-auto approach that accounts for correlation between the SNPs. In particular,

using Eq (1), the estimates of s.d.(d) across 28 phenotypes increased on average by 13.5% in

comparison to LDpred2-auto. This shows that our analytical formula leads to slight overesti-

mates of s.d.(d). Given this finding, our earlier simulation study results (see Verification and

Comparison) based on sets of independent rather than pruned SNPs will provide slight overes-

timates of the true s.d.(d), and are hence mildly conservative regarding the statistical power

and type 1 error rates of the Wald test that we would expect in realistic settings.

Table 1. Comparison of prostate cancer genetic relative risk estimates across populations.

Population

1

Population 2 Relative genetic risk* Statistical Power for Wald test

t-test, Conti et al. 2021 [8] Wald test h2
g = 0.13, pcausal = 0.34%, N = 232,586

Relative risk

(95% Confidence

intervals)

P-

value**
Relative risk (95% Credible

intervals)

P-

value

FST*** RR = 1.1 RR = 1.2 RR = 1.5 RR = 2.0

African European 2.18 (2.14–2.22) <10−300 2.99 (1.32–6.78) 2x10-3 0.12 0.46 0.84 1.00 1.00

East Asian European 0.73 (0.71–0.76) 2x10-73 0.46 (0.18–1.19) 0.05 0.12 0.46 0.84 1.00 1.00

Hispanic European 0.97 (0.94–1.00) 0.03 0.82 (0.60–1.12) 0.17 0.02 0.94 1.00 1.00 1.00

Relative risk estimates from Conti et al. 2021 [8] t-test with our Wald test.

* RR = exp [d], here d = μ1–μ2, and μ1 and μ2 denote the polygenic score mean in population 1 and 2, respectively.

** P-value calculated based on normal approximation on the log-hazard scale using confidence intervals from Conti et al. 2021 [8].

*** FST was evaluated using our estimator derived in S4 Appendix.

https://doi.org/10.1371/journal.pgen.1011212.t001
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Discussion

In this study we develop a framework for understanding the genetic contribution to differ-

ences in disease risk across populations. Unlike previous studies, we demonstrate the need to

account for uncertainty relating to the size of the GWAS training sample. We further show

that uncertainty in estimates of genetic risk differences across populations depends heavily

upon the genetic architecture of the phenotype, which is comprised of both the heritability and

proportion of causal variants, as well as being dependent upon the genetic distance (FST)

between the two populations considered. Moreover, we used a Bayesian framework for esti-

mating relative genetic risk across populations, as Bayesian approaches deliver the highest

accuracy for genetic risk prediction [22,23], and are highly flexible in incorporating informa-

tion about the genetic architecture [24,25].

Using a range of simulation studies, we found a strong relationship between the polygeni-

city of the genetic architectures and the uncertainty in estimates of genetic relative risk across

populations. For phenotypes with polygenicity in the typical range for most diseases and com-

plex traits (between 1% and 10% of variants causal), the uncertainty was low only at sample

Fig 5. Validation of posterior variance formula in UK Biobank. Estimates of the posterior standard deviation s.d.(d)

comparing European and African population disease risk for 28 diseases and complex traits from UK Biobank. For the

x-axis, s.d.(d) is computed under Eq (1), which assumes the SNPs are independent, and for the y-axis, s.d.(d) is

computed using LDpred2-auto which accounts for the correlation between the pruned SNPs.

https://doi.org/10.1371/journal.pgen.1011212.g005
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sizes>200,000. Hence for most diseases and complex traits, we argue that the sample size pres-

ent in current biobank-scale GWAS studies and large meta-analyses is too small to clearly dis-

criminate small genetic risk differences between global populations (i.e., relative risk between

1 and 1.5).

For the case of the infinitesimal model, where all variants are assumed to have a causal effect

on the phenotype, we further derive a closed-form expression that demonstrates clearly how

uncertainty in estimates of relative genetic risk is a function of the heritability, training data

sample size, and genetic distance (FST) between populations. We showed that for non-infini-

tesimal models with a high proportion of causal variants, this simple closed-form expression

provided a reasonable estimate of the posterior variance. However, we still recommend the use

of either analytical results for the posterior distribution, which we derived, or MCMC simula-

tions to estimate posterior variances, as these approaches provide greater accuracy and are

straightforward to implement [13].

We further derived a Wald test statistic relating to the posterior mean estimator of the log

relative risk across populations. We demonstrated that this test statistic had well-calibrated

type 1 error rates based on simulations, while the power of the test depended strongly upon

the proportion of causal variants along with the training sample size. For more polygenic com-

plex trait genetic architectures (pcausal ~ 10%), we observed that there was limited statistical

power available at current GWAS sample sizes (~100,000) to detect moderate differences in

genetic relative risk across populations (relative risk of 1.5 to 2), while to detect smaller differ-

ences in risk (relative risk of 1.1 to 1.2) the power only became sufficiently large for sample size

more than 1,000,000. In contrast, for less polygenic traits and diseases (pcausal ~ 1%), there was

in general sufficient power available at current available sample sizes to detect more modest

differences in genetic risk across populations, as we also showed in our prostate cancer exam-

ple. We note further that the conventional t-test, which compares mean genetic risk differences

by evaluating polygenic scores in separate target samples for each population, has very poorly

controlled type 1 error rates, even when the initial training sample size is very large. This is

due to the t-test detecting mean differences in scores that are due to sampling error in the con-

struction of the polygenic score from the training sample, even when there are no underlying

true differences in risk across the populations. This effect becomes more severe as the target

sample size increases. This is clearly a problematic property of the t-test, and this work pro-

vides strong evidence against using this approach.

Having developed a framework for understanding the uncertainty in estimates of relative

genetic risk for a general non-infinitesimal model, we provide a real data example by re-analys-

ing the study by Conti et al. [8] on prostate cancer risk. The original analysis by the authors

involved computing polygenic scores for prostate cancer risk across samples of participants

from several populations, and then using t-tests to compare the relative risk across pairs of

populations. Such an approach assumes the polygenic scores, which were composed of only

269 variants, capture the complete genetic risk of prostate cancer for individuals without mea-

surement error, which is not a plausible assumption. However, our approach continued to

identify a significantly higher genetic risk for males of African compared to European ancestry,

and a lower risk for males of East Asian ancestry. Our findings were broadly comparable with

the relative risks derived in the original study, with much greater uncertainty surrounding the

point estimates, as expected, since uncertainty in the SNP effect estimates arising from the

finite GWAS training sample was fully accounted for.

Our study has limitations to note. First, there are several challenges that exist in interpreting

differences in polygenic score means across populations. Observed differences could be attrib-

utable to various forms of bias, such as uncorrected population stratification [26–28], as well

as the choice of discovery data and polygenic score method [29]. While we were unable to
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consider the sensitivity of our test statistic to these forms of bias, our best-case scenario pro-

vides an informative lower bound on the levels of uncertainty in estimates of population differ-

ences in genetic risk.

Second, our approach depends upon using an independent set of variants to model genetic

risk differences, avoiding the complexities of modelling linkage disequilibrium patterns across

populations. This however can exacerbate the issue of imperfect tagging of causal variants, as

information is lost during the pruning process, dampening the predictive performance of the

polygenic score. The magnitude of this effect is difficult to ascertain, although we note that

LDpred2 estimates have been shown to be robust to the impact of imperfect tagging [12], while

only modest reductions in predictive accuracy are lost when pruning markers for linkage dis-

equilibrium [30]. Differences in genetic risk identified by our approach may simply reflect dif-

ferences in LD with unknown causal variants. We did however try to mitigate the effect of LD

differences in the prostate cancer data by using an African (rather than European) ancestry ref-

erence panel for the pruning procedure to maximise coverage of causal variants. Nonetheless,

we must base our inferences on a set of largely tagged SNPs, and we must further assume that

any such allele frequency differences on the tagged SNPs will reflect the frequency differences at

the true underlying causal SNPs. Future work should aim to perform simulations and case stud-

ies with realistic LD patterns that assess how estimates of population genetic risk differences

taken from a set of imperfectly tagged markers, such as the effect estimate on a set of pruned

SNPs, compares with the true population difference based on the complete set of causal SNPs.

Third, we have assumed that the causal effect sizes are equal across populations, and hence

we focus on differences in disease risk that are attributable to allele frequency differences (i.e.,

caused by random drift or selection). This is consistent with findings from recent studies

which have shown that, when environments are well controlled, there is minimal heterogene-

ity in causal effects by ancestry [31,32]. However, our approach lacks the flexibility to account

for diseases or complex traits that have population-specific genetic architectures, since differ-

ences in causal variants [33–35] and effect sizes [36,37] may also potentially drive differences

in genetic risk. In these cases, incorporating parameters such as a cross-population genetic cor-

relation [38,39] could be one potential approach, although this would require summary statis-

tics with large sample sizes for at least two populations, which are not always available. Note

however that, in our model, it is the product of genotype and effect size that contributes to

genetic risk. Thus, if causal effect sizes are truly different, the genetic risk is the same as it

would be from variants with the same effect sizes but different allele frequencies. The result of

different effect sizes, and also of imperfect tagging, is to increase the effective FST in our model,

and we can thus accommodate these factors to some extent.

Additionally, we have focussed on variability in the training sample, whereas previous stud-

ies have only focussed on variability in the target sample. The latter approach is appropriate

for comparing a given polygenic score between populations, such as for risk prediction. But

for inference about the underlying genetic model it is necessary to allow also for training sam-

ple variance. A fuller account would allow for both training and target sample variance. We

have not pursued this here as the extension of the Bayesian estimation to a target sample is not

trivial; however an ad hoc Wald test could be constructed by summing the sampling variances

of the training and target samples. In our prostate cancer analysis the results were essentially

unchanged as the variance from the training sample was much greater than from the target

sample.

Finally, while our approach can be used to detect true differences due to drift and selection,

the impact of other potential sources of population differences, such as non-additive effects

[40] and gene-environment interactions [41], and confounding by genetic and environmental

effects that correlate with ancestry [42], is unclear.
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In summary, we have developed a framework for understanding the genetic contribution to

differences in disease risk across populations. We show that uncertainty in estimates of genetic

relative risk across populations is highly dependent on the genetic architecture of the disease,

particularly the polygenicity, as well as the training GWAS sample size. Accounting for the

training sample size, we find evidence that population differences in prostate cancer risk are at

least partly attributable to genetic factors.
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