
Related Work

In this appendix, we contextualize the PS-VAE within the broader generative modeling literature. Since the
advent of variational autoencoders (VAEs; Kingma and Welling (2013), Rezende et al. (2014), and Titsias
et al. (2014)), a growing body of work has established strategies to manipulate the latent variables to make
them more interpretable. We divide the VAE variants into two classes: those which are agnostic to the labels
(unsupervised latent control), and those which use them (supervised latent control). For a more complete
review of VAE variants we refer the reader to Kingma and Welling (2019).

1 Unsupervised latent control

Information theoretic approaches. A natural way to control the latent variables is to place information-
theoretic penalties on their properties, without necessarily modifying their prior distribution. Chen et al.
(2018) decomposed the KL divergence term in the VAE objective (Eq 9) to a sum of three terms: i© mutual
information between the inputs (typically images) and their latent representation; ii© mutual information be-
tween the latent factors, quantifying statistical dependence between them (a.k.a. “Total Correlation”); and
iii© KL divergence between each latent factor and its prior. Chen et al. (2018) then show that overweighting
ii© results in strong disentanglement: traversing each dimension of the latent vector results in unique seman-
tic change in the image (see Kim et al. (2018) for a different approach to the same idea). This model (the
β-TC-VAE) corresponds to the unsupervised latent space in our model, except that we also encourage those
latent factors to be orthogonal to each other, resembling PCA.

Factorized Priors. A second family of models enforces structure in the latents’ prior. It has been shown
that building inductive biases into the priors leads to better representations and better reconstructions (Math-
ieu et al. 2019). Instead of assuming independent standard normal factors, we may encourage the multivari-
ate latent distribution to capture a range of structures: to cluster (Mathieu et al. 2019; Dilokthanakul et al.
2017; Graving et al. 2020)), to include arbitrarily rich correlations between each pair of latents (Casale
et al. 2018), to follow temporal dynamics (Johnson et al. 2016; Gao et al. 2019; Krishnan et al. 2015), or
to be sparse (Mathieu et al. 2019). Our model assumes the simplest standard normal prior but can easily
accommodate more structured priors for different applications. We leave this extension for future work.

2 Supervised latent control.

This class of models uses both the images and the labels to influence the latent vector. We subdivide it
further into discriminative approaches that use a discriminative (i.e. regression) model to predict the labels
from the latent representation, and conditional approaches that explicitly condition the latent representation
on the labels.
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Discriminative approaches. The PS-VAE is a discriminative approach: regressing the latents onto the
labels allows us to explicitly treat the observation noise in our labels, which is often non-negligble in pose
estimation algorithms. Other discriminative algorithms have been proposed that incorporate labels in various
ways (Yu et al. 2006; Zhuang et al. 2015; Gogna et al. 2016; Pu et al. 2016; Tissera et al. 2016; Le et al.
2018; Miller et al. 2019; Zheng et al. 2019; Li et al. 2020). We take our inspiration from Li et al. (2020),
which explicitly partitions the latent space into orthogonal supervised (label-relevant) and unsupervised
(label-irrelevant) subspaces; however, this model does not attempt to disentangle the unsupervised latent
space, as we do by penalizing Total Correlation.

Conditional approaches. A straightforward yet influential conditional approach is the conditional VAE
(Kingma, Mohamed, et al. 2014; Sohn et al. 2015), which simply appends the labels to the latent vector,
making them available for the decoder to use for image reconstruction. However, we have found this ap-
proach to be sensitive to noise in the labels (Wu et al. 2020). Other recent work has focused on modeling
the distributions of the latents conditioned on the labels (Khemakhem et al. 2020; Zhou et al. 2020). This
strategy can also lead to disentangled latents, but it does not produce separate label-relevant and -irrelevant
subspaces.

The PS-VAE is a novel synthesis of supervised and unsupervised latent control algorithms. Its latent space is
partitioned into orthogonal supervised and unsupervised subspaces based on labels (Li et al. 2020). Through
information theoretic and linear algebraic constraints, the PS-VAE’s novel unsupervised subspace comprises
independent and orthogonal factors (Chen et al. 2018; Kim et al. 2018), which is crucial for downstream
scientific analyses.
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