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Abstract

This Appendix gives further illustrations and figures, a glossary of terms,
and more information about the analysis of empirical afforestation project (in
particular, the full results from the analysis of the 100 regions studied).

1 Illustration of concepts and additional figures

Instabilities for vegetation rehabilitation model

Fig A shows the time development of two instabilities and the spectral densities of
the patterns that emerge for the model of vegetation rehabilitation, from which the
SO modes can be extracted. The first instability (Fig Aa) destabilizes the bare-soil
state as the precipitation rate P is increased beyond a threshold value (see Fig 3a). As
the spectral density shown in the rightmost panel indicates, the SO mode associated
with this instability is a stripe Fourier mode of the form A(t)cos(kx + ¢) with a
wavenumber k& = k; even though the natural wavenumber that the system tends to
form, ko, is generally different from ky. The growth of this mode directs the system
towards a resonant pattern of parallel stripes consisting of a vegetation band at each
modulation stripe.

The second instability (Fig Ab) destabilizes the resonant stripe pattern as P is
decreased below another threshold value (see Fig 3a). The SO modes associated with
this instability are a symmetric pair of oblique Fourier modes, a(t) cos(k,z £k, y+¢L),
where k, = k¢/2 and k, is such that the total wavenumber k is equal to the natural



wavenumber ko, i.e. satisfying k* = k2 + k) = kg, as the rightmost panel in Fig Ab
shows [1]. The growth of these modes directs the system towards a resonant rhombic
pattern (frame ¢ = 125 in Fig Ab).
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Figure A: Instabilities and associated SO modes for vegetation restoration by stripe-like
ground modulations. The four panels from left in each row show snapshots of biomass distributions
in the (x,y) plane, obtained by solving Eqs (2) and (3) in SI beyond the instability of bare soil to
a stripe pattern (a) and the instability of a stripe pattern to a rhombic pattern (b). The rightmost
panels show spectral densities of the asymptotic stripe and rhombic patterns in the Fourier plane
(kz,ky). They reveal the SO modes (dark dots) that grow beyond the instabilities: (a) a resonant
stripe mode (k; = ky,k, = 0), (b) resonant oblique modes (k, = k;/2,+k,), lying on a circle of
radius kg, the natural wavenumber in the absence of ground modulations. Note that each mode
(kz, ky) is accompanied by a conjugate mode (—k;, —k,), necessary to guarantee the real-valuedness
of the state variables.

Different plantation schemes

Two alternative options for restoring degraded vegetation by stripe-like periodic ground
modulations, continuous vs. fragmental vegetation plantation, as Fig B illustrates.

Different modeling of stochastic precipitation

We show here the results for ecosystem response under stochastic fluctuations of pre-
cipitation, equivalent to the Fig 5 in the main text, but for a different distribution of
precipitation values — a Gaussian distribution (Fig C).
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Figure B: Schematic illustration of different vegetation plantation patterns (green seg-
ments) for a stripe-like ground modulation template (black lines). (a) Continuous plantation to form
an overlapping stripe-like pattern, (b) Fragmental plantation to form a rhombic-like pattern.
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Figure C: Responses to precipitation downshifts under stochastic precipitation and dif-
ferent initial conditions of mixed vegetation states, using a Gaussian distribution. This
figure corresponds to Fig 5 in the main text, except that the distribution used for creating the pre-
cipitation time-series is with a Gaussian distribution rather than a Gamma distribution. Left, middle
and right columns correspond to negligible, weak and strong precipitation fluctuations, respectively.
(a) Demonstration of noise level. (b) Asymptotic states (see color legend) for the grazing manage-
ment system, where initial conditions consist of increasing portions of periodic pattern in uniform
vegetation (pattern share). (c) Asymptotic states for the vegetation rehabilitation system, where
initial conditions consist of increasing portions of rhombic pattern in stripe pattern (rhombic share).
Each pixel in the parameter plane (mean precipitation — share) shows the asymptotic state obtained
from averaging over 5 randomizations of temporal noise from a Gaussian distribution per simula-
tion, where the initial conditions correspond to mixtures of states calculated at P = 115[mm/yr]
(P = 260[mm/yr]) for middle (bottom) row. Note that this vertical axis is logarithmic.



2 Glossary

Most of the terms appearing below are mathematical concepts. In describing them
we favored intuitive clarity over mathematical rigor, given the broad and mostly non-
mathematically oriented readership.

Basin of attraction. The set of points in phase space, representing initial conditions
that converge in time to the same stable state.

Bifurcation diagram. A diagram that shows the existence ranges and stability
properties of possible systems states. The vertical axis represents a state variable (e.g.
biomass) while the horizontal axis represents a control parameter. Solid (dashed) lines
represent stable (unstable) states.

Growing eigenmode. The direction in phase space along which a system changes
following an instability.

More technically, a growing eigenmode is a vector that describes the relationships
between state variables that result in the growth of small perturbations as an instability
threshold is traversed.

Fourier modes. Functions that describe sinusoidal periodicities in time or space, and
are characterized by their frequency or wavenumber values, respectively.
Instabilities of stationary uniform states. Several instability types can be distin-
guished according to the eigenmode (self-organization mode) that grows beyond the
instability threshold:

e Uniform stationary instability. An instability that is driven by the monotonic
growth of a uniform eigenmode. Such an instability generally results in a different
stationary uniform state.

e Uniform oscillatory instability. An instability that is driven by the oscillatory
growth of a uniform eigenmode. Such an instability leads to uniform time-
periodic oscillations (also called ‘Hopf instability’).

o Nonuniform stationary instability. An instability that is driven by the monotonic
growth of a spatially periodic eigenmode. Such an instability leads to a stationary
periodic pattern (also called ‘Turing instability’).

e Nonuniform oscillatory instability. An instability that is driven by the oscillatory
growth of a spatially periodic eigenmode. Such an instability leads to a traveling-
wave pattern. (also called ‘Turing-Hopf instability’).

Instability and bifurcation. A threshold phenomenon in which a combination of
feedback processes act in concert to amplify small perturbations about a system state
along a particular eigenmode and lead to a state change. A state that lost its stability
may still exist as an unstable state. Instabilities are often referred to as bifurcations
since the qualitative changes they induce often involve the emergence of new additional
states.

Linear stability analysis. A method of pattern-formation theory by which insta-
bilities of system states can be identified by analyzing the dynamics of infinitesimally
small perturbations. The analysis provides information about the instability threshold
and the feedback processes that drive the instability (through the eigenmode).



Numerical continuation. A method of computing approximate solutions of differ-
ential equations by iterative methods and following them as a control parameter is
varied. The method is particularly useful for calculating bifurcation diagrams that
include unstable solution branches.

Pattern formation theory. The mathematical theory of spatially extended non-
linear dynamical systems, which accounts, among other things, for the spontaneous
emergence of spatially non-uniform states in homogeneous systems through symmetry-
breaking instabilities. The reader is referred to Ref. [2] for an introduction to pattern-
formation theory with applications to ecology.

Phase space (also state space). The space spanned by the state variables of a
dynamical system (‘phase plane’ in the case of two state variables).

Phase-space trajectory. The trajectory emanating from a point in a phase space
that describes how the state of a dynamical system changes with time.

Spatial resonance. Self-adjustment of spatial periodicity (wavelength) of a patterned
state to an imposed external periodicity. When the external periodicity, A, is close
to the system’s inherent periodicity, \g, the adjustment is 1:1, i.e. the actual system
periodicity, A, is equal to Ay. When A\ &~ \¢/2, the adjustment is 2:1, i.e. A = 2\;.
Resonant pattern. A periodic pattern with a wavelength that matches exactly the
wavelength of an externally imposed periodicity.

Saddle point. An unstable system state that has both stable and unstable manifolds,
that is, directions of convergence and departure in phase space.

Saddle-node (fold) bifurcation. A collision and disappearance of two states of a
dynamical system, as a control parameter traverses a threshold value.

Spectral density. The distribution of power among the Fourier modes of an oscil-
lating state or of a spatial pattern. The power of a Fourier mode is measured by
the square of the absolute value of its amplitude. Periodic patterns are characterized
by spectral densities with distinct peaks at wave-vectors that describe the pattern’s
periodicity.

Stable manifold of a system state. The set of points (initial conditions) in phase
space that converge at long times to the system state.

Stable state. A system state that recovers from any sufficiently small perturbation or
disturbance. The state can be stationary or oscillatory, spatially uniform or periodic.
Stationary state. A state of a dynamical system for which all state variables are
independent of time. A stationary state can be spatially uniform, spatially periodic or
disordered. The latter two are also called periodic or disordered stationary patterns.
Unstable manifold of a system state. The set of points (initial conditions) in phase
space that converge to the system state when time is run backwards. The eigenmode
that grows at an instability point provides an approximation to the unstable manifold
in the vicinity of the system state.

Unstable state. A system state that evolves towards a different state when subjected
to small perturbations of a certain form, e.g. perturbations that contain a particular
wavenumber.

Wavenumber. Spatial frequency of a periodic pattern. The wavenumber k of a
periodic pattern in a one-dimensional (1d) system is related to the pattern’s periodicity
or wavelength A through the relation £ = 27/A. In 2d systems the wavenumber is the
magnitude of the wavevector k = (k;, k), i.e. k= /kZ+ k2, where k, = 27/),,
k, = 2m /X, and \;, A, represent the periodicities of the pattern in the x,y directions.
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Figure D: Annual precipitation data from the city of Be’er-Sheva, Israel, just
south of the afforestation area considered. A year is considered to start in the previous
August, and end in July of the year, see details in the text. Dotted (dashed) lines
show the average precipitation calculated for the years 1980-2003 (2004-2019), which
is 207.5[mm] (178.6]mm]).

3 Analysis of empirical afforestation project

3.1 Precipitation data

In order to demonstrate the precipitation regime for the afforestation project in the
Northern Nevgev, Israel, we collected precipitation information from Israel’s meteo-
rological service (https://ims.data.gov.il). We chose data from the nearby stations
in the city of Be'er Sheva (a few kilometers south of the afforestation area, see next
subsection) in the time-frame of 1980-2019. Three stations had usable information,
in the following years: A) Be’er-Sheva, South (station #251900) during 1980-1995;
B) Be’er-Sheva, Negev Institute (station #251690) during 1980-2009; C) Be’er-Sheva
(station #251691) during 2004-2019. For each station, we collected monthly precipita-
tion data, and summed over the winter seasons, where we included the first 7 months
in a year with the last 5 months of the previous year in a single year (precipitation
is negligible between June and August). For instance, the precipitation between, and
including, August 2018 to July 2019 was summed and noted as the precipitation for
the year 2019.

The annual precipitation of each station and the averaged is given in table 3.1.
The averaged precipitation data is also visualized in Fig D, that highlights that the
average in 1980-2003 was approximately 205[mm], while it is lower in recent years,
with an average of approximately 180[mm] in 2004-2019.



year | Be’er-Sheva, South | Be’er-Sheva, Negev Inst. Be’er-Sheva overall average
(station #251900) (station #251690) (station #251691)
1980 305.2 310.6 307.9
1981 206.7 223.0 214.8
1982 189.9 217.7 203.8
1983 255.7 274.2 264.9
1984 137.0 144.4 140.7
1985 176.6 192.2 184.4
1986 191.0 185.0 188.0
1987 222.2 205.1 213.7
1988 244.4 262.0 253.2
1989 177.9 185.0 181.4
1990 241.2 226.5 233.9
1991 237.1 252.7 244.9
1992 307.0 280.5 293.8
1993 216.1 201.4 208.7
1994 151.7 144.1 147.9
1995 317.6 295.5 306.5
1996 148.2 146.6
1997 202.8 202.8
1998 185.0 185.0
1999 63.9 63.9
2000 114.2 114.2
2001 217.8 217.8
2002 196.6 196.6
2003 266.1 266.1
2004 45.3 148.4 96.9
2005 260.4 240.7 250.6
2006 142.6 150.4 146.5
2007 181.6 173.7 177.7
2008 115.0 111.4 113.2
2009 141.5 137.4 139.5
2010 213.8 213.6
2011 151.9 151.9
2012 144.8 144.8
2013 175.6 175.6
2014 259.8 259.8
2015 249.3 249.3
2016 257.6 257.6
2017 131.3 131.3
2018 194.2 194.2
2019 155.2 155.2

Table A: Annual precipitation data from the city of Be’er Sheva, in mm per year.
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Figure E: Map of case study domain, based on aerial images taken in 2010 of a
planted forest area. Location is the northern Negev, Israel (Coordinates: 31.295N,
34.815E), in an area of approximately 3.0x1.5 [km]. Colored dots mark locations of
150 regions chosen, each with four stripes of vegetation (color scheme given in legend,
and explained in main text).

3.2 Analysis of remote sensing data

We give here further technical details on the analysis and categorization of the aerial
images. We also show in Figs F1-F12 results of the analysis for the 100 regions studied.

All regions are located within the area shown in Fig E. The process of choosing the
regions, as well as their normalization (i.e. so as each region shows 4 vegetation stripes
along the same direction) is described in the main text (Materials and Methods). The
data of these regions is given in: https://doi.org/10.5281/zenodo.3902397.

The spectral analysis of the images (initially as RGB true color) was preformed as
follows. Each image was converted into a intensity map (grayscale), to facilitate the
FFT analysis. This was done using several image processing functions of Matlab. The
red channel (of the RGB image) was taken, and the function adapthisteq was used to
normalized intensities. The functions imerode and then imreconstruct were used (both
with a disk kernel of 5x5), to smooth out the result. This image was then converted to
spectral density map using FFT, with the central pixel set to 0 (i.e. ignoring average
intensities).

In this way, we now have six representations of each region: a color (RGB) image,
a grayscale image, and a spectral density map (i.e. after applying FFT), each for
the year 2010 and the year 2019. These six representations are shown, for each of
the 100 regions, in Figs F1-F12. For each region, based on the six representation, a
manual analysis of the transition between 2010 and 2019 was preformed. The analysis
categorized the transition that occurred in each region into one of 5 categories (shown
in different colors in Fig E):

e Category I: 16 regions show a clear oblique modes (hexagonal pattern in the
FFT plane), implying a transition to a rhombic vegetation pattern (Figs F1-F2).



Category II: 48 regions show a substantial change, with some marks of oblique
modes (Figs F3-F8).

Category III: 9 regions only show a minimal change in vegetation cover (Fig F9).

Category IV: 9 regions appear to show a collapse of the vegetation, with more
than half the trees disappearing (Fig F10).

Category V: 18 regions show a change that is not well detected by the FFT
analysis (Fig F11), or are difficult to categorize (Fig F12).

On the top of each region analysis (in the figures below), basic information is given.
A score is noted for each region, where a higher score indicates that the 2010 region
had a more regular stripe pattern (calculation of region score is defined in the Materials
and Methods section of the main text). Besides the score, a region number is given
(numbered from highest to lowest score), x&y coordinates (in pixel terms of the image
shown in Fig E), its size L (length of the square region), and the angle 6 of the region,
relative to the image in Fig E. The pixel size (as given in x,y, and L) is 0.165 [m], so
that region size ranges between 15/m| and 43 [m].



img 1 x: 11494, y: 1538, L=186,0=34.2 score: 0.74 img10  x:10720, y: 2775, L=170,0=-10.8 score: 0.60
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img 14 x: 11333, y: 3501, L=166,0=40.8 score: 0.59 img 16 x: 13786, y: =-7.8 score: 0.58

img 21 x: 10735, y: 2979, =6.2 score: 0.56 img 44 x: 11463, y: 5373, L=182,

Iy

img 45 x: 11673, y: 2933, L=184,0=48.2 score: 0.51 img 46 x: 14044, y: 836, L=204,0=0.0 score: 0.51

Figure F1: Regions of category I: clear transition to rhombic pattern (hexagonal FFT) — part 1
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Figure F2: Regions of category I: clear transition to rhombic pattern (hexagonal FFT) — part 2
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Figure F3: Regions of category II: possible transition to a rthombic pattern - part 1



img 18 x: 11242, y: 3

o

14, L=178,0=32.2 score: 0.57 img 19 x: 12108, y: 6930, L=218,0=47.7 score: 0.57

img22  x: 13387, y: 4220, 0=

(=3

img 23 x: 13038, y: 2197, L=188,0=7.2 score: 0.56

L v -~
L
©
Y
®
o
<]
5
I
°
o
o

img 25 x: 10995, y: 2195, img 26 x: 12862, y: 2566, L=236,0=42.8 score: 0.55

L
g

img 27 x: 15044, y: 6292, L=182,0=62.2 score: 0.55 img 28 x: 10622, y: 3761, L=198,0=19.8 score: 0.55

Figure F4: Regions of category II: possible transition to a thombic pattern - part 2

o

—_
w



img 29 x: 14398, y: img 31 x: 12356, y: 2362, L=154,0=-16.2 score: 0.54

img 33 x: 13031, y: 958, L=190,0=-51.7 score: 0.54 img 34 x: 11766, y:

N

841, L=176,0=41.2 score: 0.53

B

img 35 x: 11475, y: 3393, L=154,0=59.2 score: 0.53

img 38 x: 15162, y: 2290, L=170,0=47.7 score: 0.52

img 36 x: 13960, y: 135,

img 41 x: 12378, y: 4202, L=148,0=50.2 score: 0.52

i
|

Figure F5: Regions of category II: possible transition to a thombic pattern - part 3



img 42 x: 11323, y: 5471, L=160,0=61.8 score: 0.52 img 48 x: 11106, y: 1950, L=158,0=30.8 score: 0.51

7
o

img 49 x: 11303, y: 3763, img 50 x: 13280, y: 1768, L=164,0=-6.8 score: 0.50

img55  x: 15333, y: 2126, L=164,0=40.8 score: 0.48

img 60 x: 10394, y: 2614, L=174,0=5.2 score: 0.46

img 51 x: 13794, y: 2786, L=192, 0— 11.8 score: 0.49

P
|

img 57 x: 6151, y: 4741, L=130,0=55.8 score: 0.47

Figure F6: Regions of category II: possible transition to a rhombic pattern - part 4
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Figure F7: Regions of category II: possible transition to a thombic pattern - part 5
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Figure F8: Regions of category II: possible transition to a thombic pattern - part 6
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Figure F'9: Regions of category III: minimal change of vegetation cover
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Figure F'10: Regions of category VI: Apparent collapse of vegetation
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Figure F'11: Regions of category V: Unclear change in FFT plane (part 1)
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Figure F'12: Regions of category V: Difficult to categorize (part 2)

21



References

[1] Yair Mau, Lev Haim, and Ehud Meron. Reversing desertification as a spatial
resonance problem. Physical Review E, 91(1):012903, 2015.

[2] Ehud Meron. Nonlinear physics of ecosystems. CRC Press, 2015.

22



