
S2 Text: Derivation of filter equations.900

Here we derive the PATIPPET filter; the PIPPET filter can be derived similarly or as a special case of901

PATIPPET.902

Snyder [1] provides a partial di↵erential equation describing the evolution of a probability distribution on903

a continuously stochastically evolving state that drives the emission of point process events. If the evolution904

of the underlying state is described by a Gauss-Markov di↵usion process:905

dx = Axdt+BdWt (11)

and events are generated at rate �(x), then the evolution of the probability distribution pt(x) is described906

by907

dpt(x) = L[pt(x)]dt+ pt(x)

✓
�(x)

⇤
� 1

◆
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where ⇤ := E[�(x)] (with E denoting expectation under distribution pt(x)), dNt is the increment in the908

event count over each dt time step (assumed to be either 1 or 0 with probability 1), and L is the Kolmogorov909

forward operator associated with (11):910
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Here we project p onto a Gaussian distribution at each time step by matching mean µ and covariance

V, which is also the projection with minimal KL divergence. We do this by finding the di↵erentials of these

moments of pt and using them to drive the evolution of these two variables:
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where we define µ̂ := E [x�(x)], and
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where [[x]]2 denotes xxT .
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where we define V̂ := E
⇥
[[x� µt+]]2�(x)

⇤
.911

Integrating by parts (or following [3]), we can calculate the appropriate integrals of L[pt(x|Nt)], arriving912

at a general expression for the variational Bayesian filter for point process data:913
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From (4), the PATIPPET generative model is described by the Gauss-Markov di↵usion process (11) with914
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Plugging into (16), we have917

8
>>>>>>>>>><

>>>>>>>>>>:

dµt =

0

BB@
✓̄

0

1

CCA dt+ (µ̂� µt) · (dNt � ⇤dt)

dV =

0

BB@
2V 12 + �

2
V

22

V
22

�
2
✓

1

CCA dt+
⇣
V̂ �Vt

⌘
· (dNt � ⇤dt)

(17)

We complete the derivation by calculating ⇤, µ̂, and V̂. This proceeds by first deriving a simple expression918
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for p(x)�(x) as a sum of scaled normal distributions.919

Let kxk2A denote x
T
Ax. We will make use of the following result, a generalized form of a well-known920

result about quadratic forms that allows us to write products of multivariate normal distributions as normal921

distributions (see [2] for proof and similar application):922

kx� ak2A + kx� bk2B = ka� bk2A(A+B)�1B + kx� (A+B)�1(Aa+Bb)k2A+B (18)

In the PATIPPET generative model, events are generated at rate923
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p(x) is assumed (forced) to be Gaussian, so we can write:925
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Applying (18),
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where we define Ki := (Pi +V�1)�1. These two final terms are both expressions for normal distributions,
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so we can rewrite (19) as

p(x)�(x) =�0✓'(x|µ,V) + ✓
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We simplify this expression by defining ⇤i := �i'(�i|�̄, v�1
i + (V 11)�1) for i > 0, and setting ⇤0 := �0 and
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We use this expression and the moments of normal distributions to calculate ⇤, µ̂, and V̂:
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This expression picks out non-central second moment terms of each normal distributions in (21), each of

which can be written in terms of the covariance matrix and mean of the distribution. Using K
kl
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the entries in Ki, we can write
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The third-order expression for V̂ can also be written in terms of covariance matrices and means since the

central third moments of normal distributions are zero.
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Expressions (22), (23), and (24) coupled with (17) constitute the PATIPPET filter.926

The PIPPET filter can be derived as a special case of the PATIPPET filter by setting �✓ = 0, ✓0 = 1, and927

all terms in V to zero except V . However, this requires finessing various degeneracies, e.g. wherever V is928

inverted. More straightforward is to follow the same process as above, starting from the PIPPET generative929

model (1) and (2). Either way ultimately yields the PIPPET filter (3).930

For multiple event streams j,:931

dpt(x) = L[pt(x)]dt+ pt(x)
X
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This follows directly from application of the derivation above to equation (5) in [4] with a discrete spatial932

dimension. By the methods above, it yields the mPIPPET filter (8) and the mPATIPPET filter:933
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