
Mortality-MAP Analysis

1 Mortality-Mapping and Richardson-Lucy Deconvolution

Predicting cases from observed deaths can be framed as a deconvolution problem, where the ob-

servations (COVID-19 deaths) are convoluted signals of underlying parameters (COVID-19 cases

that result in death) with known transition probabilities between the two states (the distribution

of time from COVID-19 symptom onset to death). There has been research on deconvolution in

signal processing, and our work, along with the deconvolution research for the 1918 flu [1], relies

on research on deconvolution for Positron Emission Tomography [2]. In [2], it is shown that a

Richardson-Lucy (RL) algorithm, or expectation maximization (EM) algorithm, converges to the

maximum likelihood estimate of the unknown parameters. It can be shown that each iteration for

mMAP is the same as the EM step presented in [2]. First note that each iteration step (ignoring

the right-censoring for now) in mMAP is
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[2] discusses this problem in the context of reconstructing positron emission tomography (PET)

images. They denote n∗(d) as the observed count of data in tube d, λ(b) as the unobserved count

of data in box b, and p(b, d) as the probability of transmission from B to tube d. They demonstrate

that the expectation-maximization algorithm to solve the maximum likelihood estimate for the

λ(b)’s involves this step:
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where D and B are the total numbers of tubes and boxes, respectively. Note that this step is the

same as step (2) in mMAP, replacing n∗(d) with observed deaths D(τ), λ(b) with unobserved cases

C(t), and p(b, d) with the transition probabilities p(T = (τ − t)). Therefore, while both methods

are presented differently, they rely on the same iterative process. The mathematical justifications

provided for RL deconvolution in [2], specifically that the likelihood monotonically increases and

that it is concave (so EM converges to a global maximum), can therefore be used to justify mMAP.
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2 Simulated and Empirical Validation

To validate mMAP, it was analyzed using simulated and real death data until June 7 from six

countries: United States, Italy, Spain, Germany, Japan and South Korea. Fig A compares mMAP

predicted cases with reported cases. To visually scale the reported cases, the following equation is

used:

reported-scaled = reported ·
∑
predicted∑
reported

While the scales differ, the trends of predicted cases generally follow the trends of reported cases.

The later increase of reported cases as opposed to predicted cases in most countries (except Ger-

many) could be a result of increasing case detection around the start of April. As testing increases,

we would expect to see more of a relative increase in reported cases than in reported deaths (be-

cause we would likely be picking up more of the less severe cases), which would cause the reported

cases to increase more steeply than mMAP predictions.

In Fig B, the deaths for each country are simulated from the reported cases. Deaths are stochas-

tically simulated from the reported cases using an sCFR of 0.013 and the same distribution from

symptom onset to death used in the rest of this paper [3]. From the simulated deaths, mMAP

predicts the original cases. This figure demonstrates that mMAP recovers the original cases rea-

sonably well.

Both plots offer validation that mMAP can successfully predict the trend of the reported cases.

However, these plots do not demonstrate if the scale of mMAP predictions are on target, as this

is influenced by the under-reporting of deaths and the sCFR.
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Figure A: mMAP predictions compared to reported cases.

Figure B: Simulated mMAP predictions compared to reported cases.
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