Appendix for "Latching dynamics as a basis for short-term recall": Deriving scaling law under the assumption of equal visits

The quantity M can be estimated under the assumption of equal visits to each of the patterns. Under such an assumption, the probability of going to a new item m times and to one already visited at the $m+1$-th time step is given by $1(1-1 /(L-1)) \ldots(1-(m-$ 1)/($L-1$) $m /(L-1)$ and this contributes to $M=m+1$. So taking a sum for m from 1 to $L-1$ of this probability times $m+1$ gives

$$
\begin{equation*}
M \equiv \sum_{m=0}^{L-1} \frac{m(m+1)}{L-1} \prod_{k=0}^{m-1}\left(1-\frac{k}{L-1}\right) \tag{1}
\end{equation*}
$$

One simple approximation of this expression for L large yields

$$
\begin{equation*}
M \simeq \sqrt{2(L-1)} \gamma\left(\frac{3}{2}, \frac{L-1}{2}\right)-e^{-\frac{L-1}{2}}+1 \tag{2}
\end{equation*}
$$

where γ is the lower incomplete Gamma function, which for $L \rightarrow \infty$ grows as a square root,

$$
\begin{equation*}
M \simeq \sqrt{(\pi / 2)(L-1)}+1 \tag{3}
\end{equation*}
$$

One way to approximate this expression for L large is to assume $1-\frac{k}{L-1} \simeq e^{-\frac{l}{L-1}}$, so that the product of the exponentials becomes the exponential of the sum, and one has

$$
\begin{equation*}
M \simeq \sum_{m=0}^{L-1} \frac{m(m+1)}{L-1} \exp \left(-\frac{m(m-1)}{2(L-1)}\right) \tag{4}
\end{equation*}
$$

To further approximate the above sum with an integral, let $x=\frac{m}{\sqrt{L-1}}$, then we have

$$
\begin{equation*}
M \simeq \int_{0}^{\sqrt{L-1}} d x\left(\sqrt{L-1} x^{2}+x\right) e^{-\frac{1}{2}\left(x^{2}-\frac{x}{\sqrt{L-1}}\right)} \tag{5}
\end{equation*}
$$

Keeping only the first term in the exponent of the integral

$$
\begin{equation*}
\int_{0}^{\sqrt{L-1}} d x\left(\sqrt{L-1} x^{2}\right) e^{-\frac{x^{2}}{2}}=\sqrt{2(L-1)} \gamma\left(\frac{3}{2}, \frac{L-1}{2}\right) \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma\left(\frac{3}{2}, \frac{L-1}{2}\right)=\int_{0}^{\frac{L-1}{2}} t^{\frac{3}{2}-1} e^{-t} d t \tag{7}
\end{equation*}
$$

is the lower incomplete Gamma function, and

$$
\begin{equation*}
\int_{0}^{\sqrt{L-1}} d x x e^{-\frac{x^{2}}{2}}=-e^{-\frac{L-1}{2}}+1 \tag{8}
\end{equation*}
$$

An alternative expression for M is in terms of the upper incomplete Gamma function,

$$
\begin{equation*}
M \equiv \sum_{m=1}^{L-1} \frac{m(m+1)}{L-1} \frac{(L-1)!}{(L-1-m)!(L-1)^{m-1}}=\frac{e^{L-1}}{(L-1)^{L-1}} \Gamma(L, L-1) . \tag{9}
\end{equation*}
$$

To derive its asymptotic behaviour for large L, it is convenient to separate one term and write

$$
\begin{equation*}
M=1+\sum_{l=1}^{L-1} \frac{(L-1)!}{(L-1-l)!(L-1)^{l}}, \tag{10}
\end{equation*}
$$

and then use Stirling's approximation for the factorial to evaluate the sum as half an indefinite integral for $-\infty<l<\infty$, which can be evaluated at its saddle point near $l=1 / 2$, yielding again, to leading order, $M \simeq \sqrt{(\pi / 2)(L-1)}+1$.

