
Supporting Information: Model and Data Processing Sensitivity 

Analysis 

 

The aim of our work consisted of qualitatively replicating the effect of collagen concentration 

on cell migration and multicellular cluster formation. Therefore, we have not conducted 

extensive studies to analyse how small perturbations in parameters influence our numerical 

results. Nonetheless, here we present a brief sensitivity analysis to confirm the robustness of 

our model and data processing methods, as well as the adequacy of our conclusions. We have 

chosen to focus on two main aspects of our work, which we consider to be the most 

significant to our results. Firstly, in regards to the model itself, we discuss how the choice of 

a locomotive force generator function influences the results for individual cell migration. 

Subsequently, we present a sensitivity analysis study on the parameters that define the 

algorithm used to classify cells into clusters. 

 

Model Parameters 

We have identified that the model parameters that play a significant role in our obtained 

results are related to the cell-generated locomotive forces. Furthermore, we have concluded 

that the cell-cell interaction parameters are not as relevant, and, thus, we have chosen values 

that are similar to those proposed by PhysiCell, published in previous works [53]- However, 

it must be remarked that the original values found in [53] were chosen to indirectly account 

for the extracellular matrix (ECM). Thus, since we have adapted this framework to directly 

account for the ECM, we have scaled the cell-cell interaction parameters accordingly, to 

avoid considering this effect twice. Taking this into consideration, we will mainly focus on 

how the function we have used to generate these cell-generated locomotive forces affects 

the model outputs. 

Since our work regarded the qualitative trends observed experimentally, we have mostly 

focused on studying how different forces distributions influence our results, focusing on the 

shape of the distributions. Based on the assumption that the main factors acting on cell 

velocity (in the single-cell setup) are the cell-generated locomotive forces, as well as the drag 

forces determined by the ECM, and to avoid the computational cost of the model, we have 

built a simplified script to study the effect of these forces. In particular, we have built a 

Python script that implements the equation below (based on Eq 4 in our manuscript), taking 

into account values from a given force distribution and the effect of the ECM, through the 

dynamic viscosity of the matrix. 
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Here, F𝑙𝑜𝑐
𝑖  is a value chosen at random from the chosen distribution and η is the dynamic 

viscosity of the collagen matrix. For this sensitivity study, we have considered a normal 

distribution with a mean value, μ, of 0.15 and a standard deviation, σ, of 0.2; a normal 

distribution with μ = 0.0, σ = 0.45; and a lognormal distribution with μ = 0.0, σ = 0.7. The 

parameters of each function were fitted to provide the best possible results, and we compiled 

a number of velocity values comparable to that measured experimentally. The results 



obtained for this study are summarized in Fig S2_1, from which we conclude that the shape 

of the chosen distribution is highly significant and can lead to different cell behaviours. 

 

 

 

  

Fig S2_1. Estimated results for cell velocities in function of different force generator 

functions. (A) Estimated velocity distributions for a normal distribution, a normal 

distribution centred at zero and a lognormal distribution (top). To study how the force 

generator influences the computational results, we have studied multiple force distribution 

functions and their effect on cell velocity. It can be concluded that, despite capturing the 

median velocities, these distributions fail to replicate the range of the experimental values, as 

well as the lack of outliers. Hence, we conclude that the chosen distribution highly impacts 

the obtained results. (B) Comparison between the experimental results (left), the simplified 

model (centre) and the computational results obtained with the actual model (right). 

Although the simplified model predicted a broader distribution for cells grown in low-density 



matrices, we consider that the conclusions obtained with this implementation apply to our 

proposed model.  

Extending this analysis, we have also studied how the coefficients of our force generator 

function may influence our results. For our implementation, which was based on the 

empirical velocity distributions and fitted accordingly, the velocity values depend on the 

coefficients of a function given by a general third-degree polynomial form 

y(𝑥) =   𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 

which we have fitted to become 

F𝑙𝑜𝑐(𝑥) =   1.56𝑥3 + 3.27𝑥2 + 0.07𝑥 + 0.06 

Particularly, we have studied how these coefficients influence the mean, median and 

maximum cell velocity values. We have chosen to use the cells grown in medium-density 

matrices as an example since the viscosity of the matrix affects all these parameters equally, 

and, thus, we expect the changes to be comparable between matrix densities. The results of 

this study are summarized in Fig S2_2. Based on this figure, we conclude that our model is 

robust to small variations in these coefficients. 

 

Fig S2_2. Effect of the generator function coefficients on the cell velocity results. Mean 

(red), median (green) and maximum (blue) values for the instantaneous cell velocities of cells 

grown in medium-density matrices, for different parameter values. For each plot, a single 

parameter was changed, while the others were kept at the values presented in the paper 

(a=1.56, b=3.27, c=0.07, d=0.06). The coefficients were varied based on their magnitude. 

For small changes, especially those regarding coefficients c and d, the velocity values do not 

appear to be largely affected. However, for more significant increases both in a and b, the 

velocities values increase with these parameters, in particular the maximum velocity value.  

  



 

Data Analysis Parameters 

Apart from the model parameters, some aspects of the data processing methodology used 

may also influence our results, particularly for the multicellular setup. In order to quantify 

the area and eccentricity of the multicellular clusters observed after some days of growth, 

cells must be classified into clusters. Although we have tried to replicate the type of 

processing used in the experimental results, this was not completely possible, as there are 

some differences the experimental and image-based data and our computational results, that 

are based on the coordinates of the centres of the cells. Henceforth, some parameters had to 

be chosen and fitted, namely the radius and the minimum number of cells considered by the 

clustering algorithm, as well as the height of interest that we have defined to replicate the 

effect of an image-based analysis. 

To classify cells into clusters, we have chosen to select a defined region of the z-axis, to 

simulate the effect of the microscopy-based analysis, for which cells that are in different 

planes appear out of focus and are disregarded. Therefore, we have aimed to replicate this 

effect by selecting a smaller region and removing all cells whose centres are not in the said 

area. Fig S2_3 shows how the area results change with this parameter. Based on these results, 

we have selected a height of interest of 48 μm, corresponding to the diameter of two cells, 

to avoid misclassifying cells that are in different planes and that do not belong to the main 

clusters. 

 

Fig S2_3. Effect of the height of interest on cluster area. Distributions of the cluster area 

through time, in function of the selected height of interest, for high (represented in yellow) 

and medium (represented in orange) collagen densities. The value of the height parameter 

mainly affects the results obtained for cells grown in medium collagen densities, as these 

present enhanced motility abilities. Accordingly, cells are more likely to move through 

different planes of the z-axis and appear to be part of some clusters when seen in 2D. Yet, 

they are, in fact, on different planes and, consequently, do not belong to these structures. 

With this in mind, we selected a value of 48, three times the diameter of a cell, which reduces 

the number of these outliers. 

We have chosen to classify cells into clusters through the implementation of the density-

based spatial clustering of applications with noise (DBSCAN) [59,60], which requires the 

user to define the radius of interaction and the minimum number of cells in a cluster. For 

these parameters, we have aimed to choose a radius of interaction that was slightly larger 

than the radius of two cells, so that only cells that were close to each other were selected. 



Moreover, we initially defined that the minimum of clusters of cells in the radius of 

interaction should be 3. However, given that the experimental results suggest that there are 

clusters at day 1, and cells are only able to replicate once in that period, we have defined that, 

at day 1, clusters could be composed by a minimum number of cells of 2. We have only used 

this value for day 1, though, as we have observed that this also promoted the classification 

of single cells into clusters. More information on the effect of these parameters can be found 

in Fig S2_4. 

 

Fig S2_4. Effect of the DBSCAN parameters on cluster area values. Mean cluster area 

for different values of the radius of interaction and the minimum number of cells in said 

radius, at day 5. On the one hand, the effect of different values of the minimum number of 

cells is mainly noticeable between 2 and 3. A smaller minimum number of cells leads to the 

detection of small aggregates, that do not truly classify as clusters, reducing the value of the 

mean cluster area. On the other hand, the value of the radius of interaction appears to have 

a more significant effect, particularly for clusters grown in medium-density matrices. This is 

probably explained by having more cells scattered through the domain, which may be 

detected through an increase in the radius magnitude. Contrarily, high-density matrices 

produce large clusters that are fairly distanced from each other and do not present individual 

cells. 

Regarding the eccentricity values, the state of development of the tumour at seven days of 

growth allows for the clusters to be more defined, as cells grow and connect, forming large 

tumours. Hence, we have concluded that the height of interest no longer plays a significant 

role at this stage of growth, as presented in Fig S2_5. 



 

Fig S2_5. Effect of the height of interest on cluster eccentricity. Due to the state of 

development of the tumour clusters after 7 days of growth, associated with the decreased 

motility observed in medium and high collagen densities, the clusters are large and well-

defined, as almost all cells contact with each other. Moreover, there are barely any individual 

cells that do not belong to one of the clusters. Therefore, it becomes less relevant to limit 

the area of interest, to avoid cells that may be on top of the tumour, but not connected to 

the structure.  

Taking this into consideration, we have chosen to consider the entire computational domain 

to study cluster eccentricity. Moreover, we have used the same parameter values for our 

cluster area study, as we have observed that changes in these parameters would not lead to 

significant differences in eccentricity values, as presented in Fig S2_6. 

 



Fig S2_6. Effect of the DBSCAN parameters on cluster eccentricity values. For a 

defined height of 300 (the entirety of the domain), changes in the DBSCAN parameters do 

not produce significant changes in the computed eccentricity values. Therefore, we opted to 

keep the same values as those used to compute cluster area, to keep our methods consistent. 

Finally, we would like to comment on the fact that cluster eccentricity values are highly 

sensitive to small variations in cluster dimensions. Accordingly, although the computational 

results are robust to small perturbations in parameter values, there are some differences 

between the experimental and computational results, as can be seen in Fig S2_7. In particular, 

we have observed that it was very difficult to obtain eccentricity values as low as those seen 

experimentally.  

 

Fig S2_7. Differences between the experimental and computational values for cluster 

eccentricity. Experimental (left) and computational (right) results for cluster eccentricity 

(the computational results also present the equivalent ellipse from which these values have 

been calculated). It must be noted that an eccentricity of zero indicates a round cluster, 

whereas an eccentricity of one indicates a cluster that resembles a line.  The experimental 

and computational results present differences in cluster eccentricity, although a visual analysis 

may suggest comparable eccentricity values. For instance, the centre cluster in the 

computational dataset presents an eccentricity of 0.3. Compared to the experimental results 

for day 4, it seems to be as round, if not more, than the experimental cluster. Yet, the 

eccentricity value of the latter is of 0.19. Similarly, we observed this pattern for several of the 

computational clusters.  

Cluster eccentricity is computed based on the dimensions of the ellipse that best fits the 

cluster. In particular, taking an ellipse’s major, a, and minor, b, axis, we compute its 

eccentricity using the following equation 

𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 =  
√𝑎2 − 𝑏2

𝑎2
 

Therefore, we can plot cluster eccentricity in regards to the ratio between a and b, as 

presented in Fig S2_8. This plot allows us to confirm that cluster eccentricity is particularly 

sensitive at low eccentricity values. In this range (between 0-0.3, approximately), very small 

differences between the length of the ellipse axes greatly influence the eccentricity values. 

We note that our computational data is very sensitive to these differences, which are in the 

order of <10 μm, as we can keep track of the coordinates of each cell. However, the 

experimental results, which are image-based, present a lower sensitivity, as they are limited 

by the size of each pixel. Henceforth, experimental results present lower eccentricity values. 



 

Fig S2_8. Effect of the ratio between the major and minor axes of an ellipse on cluster 

eccentricity. The relationship between ellipse eccentricity and the ratio between its major 

and minor axes dictates that, for low eccentricity values, the outcome is highly sensitive to 

differences in the dimensions of the ellipse. For a cluster with a major axis of 100 μm, a 

difference of just 5% between a and b (which, in this case, is just around 5 μm) produces an 

eccentricity of around 0.3 (green lines). Furthermore, a difference of just 2 μm between the 

two axes of this cluster produces an eccentricity value of 0.2 (black lines). Contrarily, as the 

eccentricity values increase, the output becomes less sensitive to these differences. 

 


