
S1 Appendix

Scholich et al.:

Quantification of Nematic Cell Polarity in Three-dimensional Tissues

S1A List of symbols.

Table S1A contains a list of symbols used in the main text.

S1B Typical examples of raw image data.

In supplementary Fig S1A, we show raw images of the example cells analyzed in

Fig 1FG. In supplementary Fig S1B, we show raw images of the liver lobule shown in

Fig 2DE and Fig 4AB.

S1C Spherical projection of membrane protein density.

We discuss two possible methods to project surface distributions ρ(x) on an

arbitrary star-convex surface onto a sphere, shown schematically in Fig S1C. The first

method, depicted in panel A, retains the nominal value of the surface distribution. In

the second method, shown in panel B, the local surface density ρ(x) is weighted by the

relative change in area upon projection. In this case, the total mass of the distribution

is preserved. In the main text, we choose the first projection method because it ensures

that a homogeneous distribution ρ(x) on the cell surface yields a projected distribution

f(x) on the unit sphere that is again homogeneous. By that, the effect of cell shape on

the projected distribution is greatly reduced. We confirmed that changing the

projection method almost did not change computed cell polarity axes for most

hepatocytes in liver tissue. We note that the first method (shown in Fig S1CA and used

throughout this work), can be generalized to non star-convex cells, provided a

distinguished cell center can still be defined for each cell, by using a maximum

projection. In some potential applications, e.g., the study of planar cell polarity (PCP),

actual intensities of polarity markers are important, which provides an additional

argument in favor of the first method.

We used the projection method described above to compute spherical power spectra

of apical membrane distributions for kidney cells and hepatocytes, see Fig 1FG in the
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Fig S1A. Example raw images of cells analyzed in Figure 1F and 1G.
(A) Close-up of high-resolution imaging of an adult mouse kidney section stained for
nucleus (DAPI, gray) and cell borders (phalloidin, cyan), represented as orthogonal
views. The outline of the kidney cell analyzed in Fig 1F is indicated by a dashed white
line. (B) Same as panel A, but for an adult mouse liver section stained for bile
canaliculi (CD13, green), sinusoids (fibronectin and laminin, magenta), nucleus (DAPI,
gray) and cell border (phalloidin, cyan). The example hepatocyte analyzed in Fig 1G is
indicated by a dashed white line. Tissue sections were optically cleared and imaged at
high resolution using multiphoton microscopy (0.3µm × 0.3µm × 0.3µm per voxel).
Methods as described in [15].
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Fig S1B. Raw image of the liver lobule shown in Figure 4A and 4B.
(A) High-resolution imaging of an adult mouse liver section (thickness ≈ 80µm) stained
for bile canaliculi (CD13, green), sinusoids (fibronectin and laminin, magenta), nucleus
(DAPI, gray) and cell border (phalloidin, cyan), represented as orthogonal views. (B)
Maximal intensity z-projection of the same tissue slice stained for bile canaliculi (left)
and sinusoids (right). Methods as described in [15].
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Fig S1C. Schematic of spherical projection methods.
We illustrate two methods to radially project a surface density (indicated in green) on a
star-convex domain onto a co-centric sphere. (A) In the variant used in the main text,
the nominal value of the surface density is retained. (B) Alternatively, one could
multiply the local surface density by the relative change in area upon projection. Thus,
the total mass of the distribution is conserved. However, the resultant spherical
distribution will confound anisotropy of the original distribution and anisotropy of
domain shape.

main text. In supplementary Fig S1D, we provide additional statistical information for

the respective spherical power spectra.

S1D Relation between second mode spherical spectral power and order

parameters.

We can consider a distribution p(n) of nematic axes n, represented by antipodal

pairs of points, also as a surface distribution on the unit sphere, which is symmetric

with respect to a point reflection at the center. Under this correspondence, the uniaxial

order parameters S and P for n as first principal axis are intimately linked to the

expansion of p(n) into spherical harmonics, Eq. (1).

Specifically, we interpret p(n) as the density f(x) = p(n) + p(−n) defined on the

unit sphere S2. For sake of reference, we recall the decomposition of f(x) into spherical

harmonics

f(x) =

∞∑
l=0

F (x) =

∞∑
l=0

l∑
m=−l

fml Y
m
l (x) , (S1)

where Fl(x) =
∑l
m=−l f

m
l Y

m
l (x) and the normalized spherical harmonics Y ml (x) are

given in terms of spherical coordinates with polar angle θ and azimuthal angle ϕ
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Fig S1D. Quantification of spherical power spectra for kidney cells and
hepatocytes.
(A) Scatter plot of first and second spherical Fourier coefficient for apical membrane
distribution of kidney cells (n = 286 cells). For 79% of kidney cells, ||F1||2 > ||F2||2,
corresponding to points below the red diagonal. (A’) Same as panel A but for
hepatocytes (n = 9983 cells; data points are shown transparent due to their large
number). For 75% of hepatocytes, ||F1||2 < ||F2||2, corresponding to points above the
red diagonal. (B) Histogram of normalized first spherical Fourier coefficients
||F1||2/||F0||2|| for kidney cells (magenta) and hepatocytes (orange), revealing a
characteristic unimodular distribution of ||F1||2/||F0||2|| for kidney cells. (B’) Same as
panel B for the second spherical Fourier coefficients ||F2||2/||F0||2||, revealing a
characteristic unimodular distribution of ||F2||2/||F0||2|| for hepatocytes. (Histogram
normalized as probability density function.)
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(relative to the chosen z axis) by

Y ml =

√
(2l + 1)(l −m)!

4π (l +m)!
Pml (cos θ) eimϕ . (S2)

Here, Pml denote the associated Legendre polynomials.

We assume that p(n) possesses D2h-symmetry. Note that all odd spherical modes

F2l+1(x) vanish in this case. The second spherical mode F2(x) is a nematic tensor

whose mutually perpendicular eigenvectors define reference axes u, v, w, see main text

on page 12. Without loss of generality, the reference axes u, v, w shall be aligned with

the x, y, z axis, respectively. Then, all coefficients fm2 of the second mode F2(x) with

odd index m must vanish i.e., f−12 = f12 = 0 and Imf−22 = Imf22 = 0, because these

correspond to functions that are odd relative to a line reflection at the z-axis. Moreover,

f22 = f−22 , since p(n) is real.

We thus find [21]

S =

√
4π

5
f02 P =

√
6

4π

5
f22 (S3)

Conversely, the spherical power in the second mode can be expressed in terms of S and

P

Sff (2) = ||F2||2 =
1

4π

2∑
m=−2

|fm2 |2 =
5

(4π)2

(
S2 +

1

3
P 2

)
. (S4)

S1E Cuboid visualization of nematic cell polarity.

In the main text, we present a method to visualize nematic tensors AAA by colored

cuboids as shown in Fig 2. We provide additional details on this method. For a surface

density f(x) on the unit sphere S2, the moments-of-inertia tensor III reads

III =

∫
S2

d2x (1− x⊗ x) ρ(x), (S5)

i.e.,

III =
2

3
(F01−AAA) , (S6)
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where AAA is the nematic tensor associated to f(x), see Eq. (3), and F0 =
∫
S2 d2x ρ(x).

Both tensors diagonalize in the same eigenframe. The eigenvalues ι1, ι2, ι3 of III (called

principal moments of inertia), and the eigenvalues α1, α2, α3 of AAA are related by

ιi = (2/3)F0 − αi, i = 1, 2, 3 (for a suitable ordering of ιi).

In turn, the principal moments of inertia ιi of a solid cuboid with side lengths a, b, c

are given by ι1 = (b2 + c2)/12, ι2 = (a2 + b2)/12, ι3 = (a2 + c2)/12. Using Eq. (S6), we

find the side-lengths a, b, c of a cuboid that has the same principal moments of inertia

as III

a2 = 6

(
2

3
F0 + α1 − α2 − α3

)
, (S7)

b2 = 6

(
2

3
F0 + α3 − α1 − α2

)
, (S8)

c2 = 6

(
2

3
F0 + α2 − α3 − α1

)
. (S9)

In plots, cuboids are rescaled by a constant factor.

S1F Gaussian average of nematic tensors.

The coarse-grained orientation patterns shown in Fig 2E are calculated from the

nematic tensors AAA of individual hepatocytes by averaging with a Gaussian kernel.

Specifically, given nematic tensors AAA(i) at cell center locations x(i), the coarse-grained

tensor 〈AAA〉loc(x) at location x is calculated by

〈AAA〉loc(x) =
∑
i 6=j

1

(2π σ2)3/2
exp

(
−|x

(i) − x|2

2σ2

)
AAA(i) . (S10)

Here, σ denotes the standard deviation of the Gaussian kernel, which sets the

length-scale of coarse-graining. Note that we used a “punctured” Gaussian averaging

kernel that omits the tensor of the central cell, thereby avoiding any bias. As a

side-node, instead of averaging nematic tensors AAA, each derived from an individual

surface distribution f (i)(x), we could have equivalently averaged the surface

distributions first, and then computed 〈AAA〉loc as the nematic tensor of an averaged

surface distribution 〈f(x)〉loc. For the principal axes of the averaged tensor 〈AAA〉loc, we

write 〈a1〉loc, 〈a2〉loc, 〈a3〉loc, for short.
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S1G Co-orientational order parameters for Integrin-β1.

In a previous publication, we had shown that selective silencing of Integrin-β1 in

hepatocytes of murine liver substantially reduces liquid-crystal order of hepatocyte

polarity [15]. We have re-analyzed the same data in terms of the new co-orientational

order parameters (COOP) introduced in this work. We find that in Integrin-β1

knockdown mice, COOP are substantially reduced both for COOP that compare

hepatocyte polarity with reference axes provided by the local average of hepatocyte

polarity itself, and for COOP that compare hepatocyte polarity to the local anisotropy

of the sinusoidal network, see Fig S1EDF. In contrast, control conditions (siRNA

against Luciferase) gave as essentially the same COOP as adult data sets without

siRNA. Thus, silencing Integrin-β1, which affects communication between hepatocytes

and sinusoidal cells, perturbs the tissue-level alignment of hepatocyte polarity as well as

co-alignment with the sinusoidal network.

S1H Nematic interaction models.

For efficient simulation of the nematic interaction model given by Eq. (12), we used

a constant nematic tensor for the anisotropy of the sinusoidal network,

SSS = σ1 s1 ⊗ s1 + σ2 s2 ⊗ s2 + σ3 s3 ⊗ s3, with eigenvectors s1, s2, s3, and corresponding

eigenvalues σ1, σ2, σ3. The eigenvalues σ1, σ2, σ3 of SSS were computed as the average of

the respective eigenvalues of the local anisotropy tensors SSS(x(i)) given by Eq. (11). For

the mouse liver tissue data set analyzed here, these eigenvalues read σ1 ≈ 0.22,

σ2 ≈ −0.19, σ3 = −σ1 − σ2. Likewise, we computed average eigenvalues of the tensor AAA

of apical cell polarity of hepatocytes as α1 ≈ 0.18, α2 ≈ −0.19, α3 = −α1 − α2.

In addition to the interaction proposed in Eq. (12), two model variants are

conceivable: (a) the bipolar axis a1 of hepatocytes could be coupled to the local

anisotropy tensor SSS of the sinusoidal network, or (b) the full nematic tensor AAA of

hepatocyte polarity, which comprises both the ring and the bipolar axes, could couple to

SSS. These two model variants (a) and (b) correspond to the respective effective

interaction energies

model variant (a): H = −λα1 (a1 ⊗ a1) : SSS (S11a)

model variant (b): H = −λ AAA : SSS (S11b)
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Fig S1E. COOP of hepatocyte polarity are reduced in Integrin-β1 KD mice.
(A) Maximal intensity z-projection of a liver tissue slice from control mice (siRNA
against Luciferase) stained for bile canaliculi (left), sinusoids (middle), and merge
(right). Tissue organization is indistinguishable from normal adult tissue. Methods as
described in [15]. (B) Same as panel A, but for Integrin-β1 knockdown mice. The bile
canaliculi network and the sinusoidal network each display reduced apparent alignment
with the CV-PV axis in comparison to control conditions. Panels A and B reproduced
from [15] under CC-BY license. (C) Co-orientational order parameters (COOP)
quantifying hepatocyte polarity with respect to reference axes provided by the local
average of hepatocyte polarity itself, analogous to Fig 3G in the main text, but for
control conditions (siRNA against Luciferase, mean±s.d., n = 7 tissue samples). (D)
Same as panel C, but for Integrin-β1 knockdown mice, revealing a substantial reduction
of co-S and co-P in comparison to control conditions (mean±s.d., n = 4 tissue samples).
(E) Co-orientational order parameters (COOP) quantifying hepatocyte polarity with
respect to reference axes provided by the local anisotropy of the sinusoidal network
analogous to Fig 4C in the main text, but for control conditions. (F) Same as panel E,
but for Integrin-β1 knockdown mice, revealing again a substantial reduction of co-S and
co-P in comparison to control conditions (mean±s.d., n = 4 tissue samples).
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Fig S1F shows simulation results for these two alternative models. We find that these

alternative models cannot account for the experimentally observed values of the

co-orientational order parameters.

S1I Effect of axes permutations on orientational order parameters

S, P,D,C

The orientational order parameters (OOP) S, P , D, C defined in Eq. (7) change

under a permutation π ∈ S3 of the principal axes, n = aπ(2), m = aπ(1), l = aπ(3), as

well as under a permutation ρ ∈ S3 of the reference axes, w = eρ(2), v = eρ(1),

u = eρ(3). The action of the direct product of both permutation groups, G = S3 × S3,

defines an equivalence relation on the four-dimensional space of 4-tuples (S, P,D,C),

where each G-orbit defines one equivalence class that corresponds to the same state of

orientational order. Fig S1G illustrates the action of the permutation group G on a

two-dimensional section of the four-dimensional (S, P,D,C)-space.

Table S1B lists the transformation of the orientational order parameters (OOP) S,

P , D, C under the action of the group G.
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Fig S1F. Alternative minimal interaction models ruled out by experimental
data. (A) Co-orientational order parameters predicted by a variant of the minimal
interaction model, where only the bipolar apical nematic axis a1 of hepatocytes is
coupled to the anisotropy of the local sinusoidal network, see Eq. (S11a). There exists
no value of the effective interaction strength λ for which simulation results are
consistent with the experimental values (shaded region: mean±s.d., n = 12 tissue
samples). (B) Co-orientational order parameters predicted by a second variant of the
minimal interaction model, see Eq. (S11b). Here, the full apical nematic polarity tensor
AAA of hepatocytes is coupled to the anisotropy of the local sinusoidal network. Again,
there exists no value of λ consistent with the experimental data.
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Fig S1G. Action of axes permutation on orientational order parameters
(OOP). (A) Illustration of the action of the permutation group G = S3 × S3 (which
permutes principal and reference axes, each) on the four-dimensional (S, P,D,C)-space
of orientational order parameters. Shown is the section defined by D = C = 0,
corresponding to the subspace spanned by S and P that describes orientational order of
a single axis. Colored regions show the tessellation of this subspace under the action of
the permutation group S3 of reference axes u, v, w. The red region containing case i)
corresponds to a common convention in the theory of liquid crystals [21,23]. (B)
Example distribution of first principal axis n (represented by antipodal pairs of cyan
points on the unit sphere), displaying phase-biaxial order. Three different permutations
of the reference axes (cases i, ii, iii) give rise to three different sets of order parameters
for the same distribution of principal axes (corresponding values of co-S and co-P
indicated in panel A).
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Table S1A. List of symbols used in the main text.

Symbol Description
ρ(x) scalar area density, e.g., density of polarity marker on cell surface

f(x) scalar area density on unit sphere S2; projection of ρ(x)

Fl(x) l-th mode of spherical Fourier transform of f(x), see Eq. (1)

fml m-th expansion coefficient of Fl(x), for expansion into spherical harmonics

S2 unit sphere∫
S2 d2x integral over unit sphere, using standard Euclidean measure

||Fl||2 spherical power of l-th mode Fl(x) of spherical Fourier transform of f(x), see Eq. (2)

AAA nematic tensor associated to surface density f(x), see Eq. (3)

α1, α2, α3 eigenvalues of AAA

a1, a2, a3 eigenvectors of AAA corresponding to α1, α2, α3 with α1 ≥ α3 ≥ α2; we refer to a1 as
bipolar axis and a2 as ring axis

n, m, l principal axes; the tripod of ortho-normal vectors n, m, l represents a permutation
of a1, a2, a3: n = aπ(2), m = aπ(3), n = aπ(1) with n first principal axis, m second
principal axis, l third principal axis

π, ρ ∈ S3 permutations of the indices (1, 2, 3)

QQQ, BBB traceless tensors, which characterize the tripod n, m, l, see Eq. (4)

RRRQ, RRRB rotation matrices that diagonalize QQQ and BBB, respectively, see Eqs. (5,6)

w, v, u reference axes; derived from either a common eigenframe e1, e2, e3 of the tensors
QQQ and BBB, w = eρ(2), v = eρ(3), u = eρ(1) (OOP), or from a second set of nematic
tensors EEE with eigenvalues ε1, ε2, ε3 that are ordered such that ε1 ≥ ε3 ≥ ε2, and
corresponding eigenvectors e1, e2, e3: w = e2, v = e3, u = e1 (COOP); in both
cases, we refer to the orthonormal vectors w, v, u as w first reference axis, v second
reference axis, u third reference axis

S, P , D, C orientational order parameters (OOP) that characterize biaxial order in an ensemble of

tripods a
(i)
1 , a

(i)
2 , a

(i)
3 (with D2h-symmetry), indexed by i; S is the (uniaxial) nematic

order parameter, P is the phase-biaxial order parameter, D and C are molecular
biaxiality parameters that quantify order of a second nematic axis, see Eq. (7)

co-S, co-P , co-D, co-C co-orientational order parameters (COOP), introduced here, corresponding to a fixed
ordering of principal axes, n = a2, m = a3, l = a1, derived from the eigenvectors
a1, a2, a3 of a nematic tensor AAA with corresponding eigenvalues α1, α2, α3 that are
ordered such that α1 ≥ α3 ≥ α2, and a fixed ordering of reference axes w = e2,
v = e3, u = e1 derived from the eigenvectors e1, e3, e2 of a second nematic tensor EEE
with corresponding eigenvalues ε1, ε2, ε3 that are ordered such that ε1 ≥ ε3 ≥ ε2, see
Eq. (10)

SSS nematic tensor of local anisotropy of sinusoidal network, see Eq. (11)

s1, s2, s3 eigenvectors of SSS, corresponding to eigenvalues ε1, ε2, ε3 with ε1 ≥ ε3 ≥ ε2
1 identity tensor with components 1αβ = δαβ

H dimensionless Hamiltonian of minimal interaction model, see Eq. (12)

λ effective interaction strength in H

III moments-of-inertia tensor, see Eq. (S5)

a, b, c side-lengths of equivalent cuboid for the visualization of nematic tensors AAA, see SI
text S1E; the convention α1 ≥ α3 ≥ α2 for the eigenvalues α1, α2, α3 of AAA implies
a ≥ b ≥ c; faces normal to edges of length a are colored red, faces normal to edges of
length b are colored green, faces normal to edges of length c are colored blue
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π ρ S P D C

(lmn) (uvw) S P D C

(uwv) 1
2 (−S − P ) 1

2 (−3S + P ) 1
2 (−D − 3C) 1

2 (−D + C)

(vuw) S −P D −C
(vwu) 1

2 (−S − P ) 1
2 (3S − P ) 1

2 (−D − 3C) 1
2 (D − C)

(wuv) 1
2 (−S + P ) 1

2 (−3S − P ) 1
2 (−D + 3C) 1

2 (−D − C)

(wvu) 1
2 (−S + P ) 1

2 (3S + P ) 1
2 (−D + 3C) 1

2 (D + C)

(lnm) (uvw) 1
2 (−S −D) 1

2 (−P − 3C) 1
2 (−3S +D) 1

2 (−P + C)

(uwv) 1
4 (S + P +D + 3C) 1

4 (3S − P + 3D − 3C) 1
4 (3S + 3P −D − 3C) 1

4 (3S − P −D + C)

(vuw) 1
2 (−S −D) 1

2 (P + 3C) 1
2 (−3S +D) 1

2 (P − C)

(vwu) 1
4 (S + P +D + 3C) 1

4 (−3S + P − 3D + 3C) 1
4 (3S + 3P −D − 3C) 1

4 (−3S + P +D − C)

(wuv) 1
4 (S − P +D − 3C) 1

4 (3S + P + 3D + 3C) 1
4 (3S − 3P −D + 3C) 1

4 (3S + P −D − C)

(wvu) 1
4 (S − P +D − 3C) 1

4 (−3S − P − 3D − 3C) 1
4 (3S − 3P −D + 3C) 1

4 (−3S − P +D + C)

(mln) (uvw) S P −D −C
(uwv) 1

2 (−S − P ) 1
2 (−3S + P ) 1

2 (D + 3C) 1
2 (D − C)

(vuw) S −P −D C

(vwu) 1
2 (−S − P ) 1

2 (3S − P ) 1
2 (D + 3C) 1

2 (−D + C)

(wuv) 1
2 (−S + P ) 1

2 (−3S − P ) 1
2 (D − 3C) 1

2 (D + C)

(wvu) 1
2 (−S + P ) 1

2 (3S + P ) 1
2 (D − 3C) 1

2 (−D − C)

(mnl) (uvw) 1
2 (−S −D) 1

2 (−P − 3C) 1
2 (3S −D) 1

2 (P − C)

(uwv) 1
4 (S + P +D + 3C) 1

4 (3S − P + 3D − 3C) 1
4 (−3S − 3P +D + 3C) 1

4 (−3S + P +D − C)

(vuw) 1
2 (−S −D) 1

2 (P + 3C) 1
2 (3S −D) 1

2 (−P + C)

(vwu) 1
4 (S + P +D + 3C) 1

4 (−3S + P − 3D + 3C) 1
4 (−3S − 3P +D + 3C) 1

4 (3S − P −D + C)

(wuv) 1
4 (S − P +D − 3C) 1

4 (3S + P + 3D + 3C) 1
4 (−3S + 3P +D − 3C) 1

4 (−3S − P +D + C)

(wvu) 1
4 (S − P +D − 3C) 1

4 (−3S − P − 3D − 3C) 1
4 (−3S + 3P +D − 3C) 1

4 (3S + P −D − C)

(nlm) (uvw) 1
2 (−S +D) 1

2 (−P + 3C) 1
2 (−3S −D) 1

2 (−P − C)

(uwv) 1
4 (S + P −D − 3C) 1

4 (3S − P − 3D + 3C) 1
4 (3S + 3P +D + 3C) 1

4 (3S − P +D − C)

(vuw) 1
2 (−S +D) 1

2 (P − 3C) 1
2 (−3S −D) 1

2 (P + C)

(vwu) 1
4 (S + P −D − 3C) 1

4 (−3S + P + 3D − 3C) 1
4 (3S + 3P +D + 3C) 1

4 (−3S + P −D + C)

(wuv) 1
4 (S − P −D + 3C) 1

4 (3S + P − 3D − 3C) 1
4 (3S − 3P +D − 3C) 1

4 (3S + P +D + C)

(wvu) 1
4 (S − P −D + 3C) 1

4 (−3S − P + 3D + 3C) 1
4 (3S − 3P +D − 3C) 1

4 (−3S − P −D − C)

(nml) (uvw) 1
2 (−S +D) 1

2 (−P + 3C) 1
2 (3S +D) 1

2 (P + C)

(uwv) 1
4 (S + P −D − 3C) 1

4 (3S − P − 3D + 3C) 1
4 (−3S − 3P −D − 3C) 1

4 (−3S + P −D + C)

(vuw) 1
2 (−S +D) 1

2 (P − 3C) 1
2 (3S +D) 1

2 (−P − C)

(vwu) 1
4 (S + P −D − 3C) 1

4 (−3S + P + 3D − 3C) 1
4 (−3S − 3P −D − 3C) 1

4 (3S − P +D − C)

(wuv) 1
4 (S − P −D + 3C) 1

4 (3S + P − 3D − 3C) 1
4 (−3S + 3P −D + 3C) 1

4 (−3S − P −D − C)

(wvu) 1
4 (S − P −D + 3C) 1

4 (−3S − P + 3D + 3C) 1
4 (−3S + 3P −D + 3C) 1

4 (3S + P +D + C)

Table S1B. Transformation of the orientational order parameters S, P , D, C, under a
permutation π ∈ S3 of the principal axes, or permutation ρ ∈ S3 of the reference axes.
Permutations are shown in one-line notation (i.e., second row of Cauchy’s two-line
notation).
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S1J Relation between biaxial order parameters and invariants of moment

tensors.

We quantified orientational order of nematic tensors by the four classical order

parameters S, P , D, C, as well as by co-orientational order parameters co-S, co-P ,

co-D, co-C. We present yet a third variant to quantify biaxial order: invariants of

moment tensors [38].

We consider the first two moments, TTT and VVV , of a distribution of nematic tensors AAA

first moment: TTT = 〈AAA〉 ,

second moment: VVV = 〈AAA ·AAA〉 with components Vαβ = 〈AαγAγβ〉 . (S12)

Here, the dot operator ‘·’ corresponds to a matrix multiplication, i.e., AAA ·AAA is again a

3× 3-matrix with components (AAA ·AAA)αβ =
∑3
γ=1AαγAγβ for α, β = 1, . . . , 3. From

these averaged tensors, we obtain scalar invariants by tensor contraction

I1 = trAAA, I2 = trAAA2, I3 = trAAA3,

I4 = trVVV , I5 = trVVV 2, I6 = trVVV 3, . . . . (S13)

Note that since AAA is traceless, all non-zero contractions of the rank-4 super-tensor

〈AαγAδβ〉 can already be derived from the rank-2 tensor VVV .

If the ensemble of tensors AAA(i) exhibits D2h-symmetry, the moment tensors TTT and VVV

diagonalize in a common eigenframe [39]. The invariants I1, . . . , I6 can then be

expressed in terms of symmetric polynomials in the eigenvalues of these tensors.

Specifically, we denote the eigenvalues of TTT by µ1, µ2 and µ3, and the eigenvalues of VVV

by ν1, ν2, ν3. Then the invariants of tensor moments are given as

I1 =

3∑
i=1

µi = 0, I2 =

3∑
i=1

µ2
i , I3 =

3∑
i=1

µ3
i ,

I4 =

3∑
i=1

νi, I5 =

3∑
i=1

ν2i , I6 =

3∑
i=1

ν3i , . . . . (S14)

Conversely, given the invariants I1, I2, . . . , I6, we can compute the eigenvalues µ1, µ2,

µ3, and ν1, ν2, ν3, yet only up to a permutation, by solving the polynomial system of

equations, Eq. (S14).
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We now show how the tensor invariants are related to the classical order parameters

S, P , D, C. We make the simplifying assumption that all nematic tensors AAA of the

ensemble have identical eigenvalues α1, α2, α3. As usual, we assume α1 ≥ α3 ≥ α2, and

denote the corresponding eigenvectors as n = a2, m = a1, l = a3. By Eq. (4), each

tensor AAA is now associated with tensors QQQ and BBB. We can write

AAA = ξ0QQQ+ ξ1BBB , (S15)

with weights ξ0, ξ1 that satisfy α2 = ξ0, α1 = −(ξ0 + 3ξ1)/2, α3 = −(ξ0 − 3ξ1)/2. Note

that a permutation of eigenvalues also changes the weights ξ0 and ξ1. Our usual

ordering of eigenvalues with α1 ≥ α3 ≥ α2 corresponds to 0 ≥ ξ0/3 ≥ ξ1. In the general

case, where the eigenvalues of AAA vary within the ensemble, the invariants Ij will depend

on both the orientational order of the principal axes of AAA, as well as on the distribution

of weights.

In the case of constant weights ξ0, ξ1, it follows TTT = 〈AAA〉 = ξ0 〈QQQ〉+ ξ1 〈BBB〉. Likewise,

the second moment VVV can be expressed as a linear superposition of 〈QQQ〉, 〈BBB〉, and 1 as

VVV = ζ0 〈QQQ〉+ ζ1 〈BBB〉+ ζc 1 , (S16)

where ζ0 = (ξ20 − 3ξ21)/2, ζ1 = −ξ0ξ1, ζc = (ξ20 + 3ξ21)/2.

We thus have a direct correspondence between the eigenvalues of the moment

tensors and the orientational order parameters S, P , D, C

2µ1 = −ξ0S +ξ0P − ξ1D +3 ξ1C ,

2µ2 = −ξ0S −ξ0P − ξ1D −3 ξ1C ,

2µ3 = 2ξ0S +2ξ1D ,

2 ν1 = 2ζc − ζ0S +ζ0P − ζ1D +3 ζ1C ,

2 ν2 = 2ζc − ζ0S −ζ0P − ζ1D −3 ζ1C ,

2 ν3 = 2ζc +2ζ0S +2ζ1D .

(S17)

Note µ1 + µ2 + µ3 = 0, while ν1 + ν2 + ν3 = 3ζc.

Together, Eq. (S14) and Eq. (S17) allow to compute the orientational order

parameters S, P , D, C from the invariants of tensor moments. Note that the first
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tensor moment is not sufficient to determine the OOP, but that at least the second

moment is needed. (In the non-generic case ξ0 = −1 and ξ1 = ±1 for which ζ0 = ξ0 and

ζ1 = ξ1, also a third tensor moment needs to be taken into account.)

We emphasize that the values of the invariants I1, I2, . . . , I6 are independent of any

ordering of axes, whereas the values of the orientational order parameters S, P,D,C

depend on the ordering of both the principal and the reference axes. This is reflected in

Eq. (S14) by the fact that I1, I2, . . . , I6 do not change under neither a permutation of

the eigenvalues µ1, µ2, µ3, nor a permutation of the eigenvalues ν1, ν2, ν3. In contrast,

Eq. (S17) shows that S, P , D, C depend on the ordering of eigenvalues. As a

consequence, the orientational order parameters S, P , D, C can change discontinuously

if system parameters are smoothly varied, while the invariants I1, I2, . . . , I6 do not, see

Fig S1H. Despite this desirable property of the invariants I1, I2, . . . , I6, the invariants

lack the intuitive geometric interpretation of the orientational order parameters S, P ,

D, C. The co-orientational order parameters co-S, co-P , co-D, co-C introduced in the

main text combine the advantageous property of a smooth dependence on system

parameters with intuitive geometric interpretation.

S1K Commented computer program. A commented Matlab script, which

computes COOP for prototypical examples, is available online (written in Matlab, The

Mathworks Inc.; compatible with GNU Octave). The program generates synthetic data

sets of tripods of nematic axes using inverse sampling of a Boltzmann distribution for

different effective interaction energies H, as used in Fig 3, Fig 5A, Fig S1F and Fig S1H,

panel B. Three-dimensional visualization can be rotated interactively by the user.
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Fig S1H. Comparison of orientational order parameters (OOP),
co-orientational order parameters (COOP), and invariants of moment
tensors for phase-biaxial order. (A) Orientational order parameters S, P , D, C for
a Boltzmann distribution p ∼ exp(−H) of biaxial objects governed by the dimensionless
Hamiltonian H = −5(a2 · e2)2 − 5γ (a2 · e1)2 as function of the effective interaction
parameter γ. The ordering π of principal axes with n = aπ(2) as well as the ordering ρ
of reference axes with w = eρ(2), v = eρ(3), u = eρ(1) in the definition of S, P , D, C,
Eq. (7) is chosen such that |S| is maximal and P ≥ 0, C ≥ 0 (as common in the field of
liquid crystals [23]). Note the discontinuous change of S and P caused by a change in ρ.
(B) Same as panel A for the co-orientational order parameters co-S, co-P , co-D, co-C,
where a fixed ordering π = id of principal axes and a fixed ordering ρ = id of reference
axes is used. For this choice, Eq. (9) holds for γ = 0, but not for general γ. (C)
Invariants of tensor moments as defined in Eq. (S14) for the same system.
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