[bookmark: _GoBack]Supplementary material
Contents
Distribution versions and download links	1
System requirements	1
Installation details, system requirements and license	2
Demos and instructions to use	2
Workstation details	3
Supplementary information for Fig 2A	3
Supplementary information for Fig 2B	5
Supplementary information for Fig 2C	9
Supplementary information for Fig 2D	12
References:	15

[bookmark: _Toc64290214]Distribution versions and download links
DeepMIB is bundled with Microscopy Image Browser (MIB) [1] and installed automatically during installation of MIB (version 2.70 or newer).
MIB is provided in the following distribution packages:
- Matlab version, compatible with Windows, MacOS and Linux (requires Matlab license)
- Standalone, compiled for Windows (does not require Matlab license)
- Standalone, compiled for MacOS (does not require Matlab license)
- Standalone, compiled for Linux (does not require Matlab license)
Up-to-date code and new releases are available from:
- MIB website: http://mib.helsinki.fi/downloads.html
- GitHub: https://github.com/Ajaxels/MIB2 and https://github.com/Ajaxels/MIB2/releases

[bookmark: _Toc64290215]System requirements
Efficient training of convolutional networks requires CUDA version 10.1 (or newer) compatible GPU. The full list of supported GPU architectures is available here: https://se.mathworks.com/help/parallel-computing/gpu-support-by-release.html
Matlab version of MIB+DeepMIB available for Windows, MacOS and Linux:
· Matlab, version 9.7, R2019b (or newer)
· Computer Vision Toolbox, version 9.1, R2019b (or newer)
· Deep Learning Toolbox, version 13.0, R2019b (or newer)
· Image Processing Toolbox, version 11.0, R2019b (or newer)
· Parallel Computing Toolbox, version 7.1, R2019b (or newer)
Tested on Windows 10 (for Matlab R2019b, R2020a, R2020b), MacOS Mojave (R2019b), Linux Ubuntu 18.04.5 LTS (R2019b)
Standalone MIB+DeepMIB, compiled for Microsoft Windows:
· Windows, x64 bit
· All required libraries are automatically installed during the installation process
Tested on Windows 10, x64 (compiled with Matlab R2019b)
Standalone MIB+DeepMIB, compiled for MacOS:
· MacOS, x64 bit
· All required libraries are automatically installed during the installation process
Tested on MacOS, x64, Mojave, version 10.14.6 (compiled with Matlab R2019b)
Standalone MIB+DeepMIB, compiled for Linux:
· Linux, x64 bit
· All required libraries are automatically installed during the installation process

Tested on Ubuntu Linux x64, version 18.04.5 LTS (Bionic Beaver) equipped with GRID P100-4Q (Tesla P100) GPU (compiled with Matlab R2019b)

[bookmark: _Toc64290216]Installation details, system requirements and license
Detailed installation guides are available on MIB website (DeepMIB is automatically installed during installation of MIB):
· Matlab version:
· text description (http://mib.helsinki.fi/downloads_installation.html)
· video demonstration (https://youtu.be/aGjys3nAmx0)
· Standalone version for Windows: http://mib.helsinki.fi/downloads_installation_windows.html
· Standalone version for MacOS: http://mib.helsinki.fi/downloads_installation_macos.html
· Standalone version for Linux: http://mib.helsinki.fi/downloads_installation_linux.html
Installation time for Matlab version: 1-5 minutes depending on user experience with Matlab
Initial installation time for standalone version: ~7-15 minutes (depending on the network performance) for initial installation, which includes installation of the required MATLAB Runtime (a standalone set of shared libraries that enables the execution of compiled MATLAB applications or components) or ~30 seconds, when Matlab libraries are already installed on the system)
Microscopy Image Browser and DeepMIB are licensed under the GNU General Public License v2.

[bookmark: _Toc64290217]Demos and instructions to use
To start DeepMIB use: MIB->Menu->Tools->Deep learning segmentation
For better understanding of DeepMIB workflow, we released two online tutorials explaining GUI of DeepMIB and show all step required to achieve similar to presented in Fig 2A and Fig 2D results
· DeepMIB: How to train 2D U-Net for microscopy images (49 minutes), https://youtu.be/gk1GK_hWuGE
· DeepMIB: How to train 3D U-Net for microscopy images (34 minutes), https://youtu.be/U5nhbRODvqU
All details about the user interface are specified in DeepMIB Help system available upon press of the Help button in the left bottom corner of DeepMIB window
All presented results can be reproduced by loading the config file (mibCfg extension), which is accompanying each example from Fig 2 (DeepMIB->Options tab->Config files->Load). See below for detailed instructions and download links.

[bookmark: _Toc64290218]Workstation details
· Intel Xeon E5-2637 v2, @3.5GHz (2 cores), 192Gb RAM, NVidia GeForce GTX 1080 TI, 11Gb
· Windows 10, 64bit
· Matlab (Mathworks Inc.), R2019b with Deep Learning, Computer Vision, Image Processing, Parallel Computing Toolboxes
· Amira 2019.4 (Thermo-Fisher Scientific) was used for 3D rendering of models and S3 Movie and S4 Movie.
· Microscopy Image Browser (MIB), version 2.70

[bookmark: _Toc64290219]Supplementary information for Fig 2A
Serial section Transmission Electron Microscopy dataset of the Drosophila first instar larva ventral nerve cord
Dataset details
The training and test datasets of the Drosophila first instar larva ventral nerve cord [2] obtained using serial section Transmission Electron Microscopy (ssTEM). The dataset was downloaded (http://brainiac2.mit.edu/isbi_challenge/home) from ISBI Challenge: Segmentation of neuronal structures in EM stacks [3].
The training set consisted of 30 8-bit annotated sections with dimensions (height x width) of 512x512 pixels and 1 color channel acquired with a resolution of 4x4x50 nm/voxel. The test set has the same dimensions but provided unannotated. Because the dataset has large anisotropic voxels we used 2D U-Net for its segmentation.
Preparation of downloaded datasets for DeepMIB
All image processing steps were done in MIB:
1. Load “train-volume.tif” to MIB. The contrast of the dataset is not normalized, i.e. some slices brighter that the others. We used the dataset as it is without contrast normalization (even though it is available in MIB) to test the robustness of the method
2. Load the model file: “train-labels.tif”; the model encodes cells with index 255 and membranes with index 0
3. Select material 255 (cells) in the Segmentation table, press Alt+A to highlight it as the Selection layer of MIB; invert the Selection layer (Menu->Selection->Invert selection) to highlight membranes.
4. Create a new model (Menu->Models->New model) and add a new material “membranes” (the “+” button in the Segmentation panel), press Shift+A to assign membranes to this new material of the model
5. Save dataset (Menu->File->Save as) to “MyProject\1_Training” directory using AmiraMesh binary file sequence format, which creates a sequence of 2D files; alternatively TIF format can be used.
6. Save model (Menu->Models->Save model as) to the same directory using *.model format
7. Load “test-volume.tif” and save it to “MyProject\2_Prediction” directory using AmiraMesh binary file sequence format
Network training
	Network settings: 2D U-Net

	Input patch size:
	508 508 1 1
	NumFirstEncoderFilters:
	64

	Padding:
	valid
	Filter size:
	3

	Number of classes:
	2
	Segmentation layer:
	dicePixelCustomClassificaionLayer

	Encoder depth:
	4
	Augmentation:
	on

	Patches per image:
	64
	Input layer normalization:
	rescale-zero-one, Min=0, Max=255

	Mini batch size:
	1
	Validation fraction:
	0.15

	Augmentation settings

	Fill value
	0
	RandScale:
	0.9 1.1

	RandXReflection:
	on
	RandXScale:
	1 1

	RandYReflection:
	on
	RandYScale:
	1 1

	RandRotation:
	-15 15
	RandXShear:
	-10 10

	
	
	RandYShear:
	-10 10

		
	Training settings

	SolverName
	sgdm
	LearnRateDropFactor:
	0.1

	MaxEpoch:
	50
	L2Regularization:
	0.0001

	Shuffle:
	every-epoch
	Momentum:
	0.9

	InitialLearnRate:
	0.005
	ValidationFrequency:
	400

	LearnRateSchedule:
	piecewise
	Plots:
	training-progress

	LearnRateDropPeriod:
	10
	
	

Training progress plot:
[image:]
Timing: training: 4h 56min 17sec; prediction: 8.35 seconds for 30 images (512x512 pixels, 0.28 image/sec)
Evaluation scores:
The presented scored were acquired from organizers of the ISBI Challenge: Segmentation of neuronal structures in EM stacks for the inverted model, where membranes are encoded with 0 (Exterior) and cells as 255.
Maximal foreground-restricted Rand score after thinning: 0.912748128
Maximal foreground-restricted information theoretic score after thinning: 0.969861473

DeepMIB project and installation instructions:
The full project directory is available via this link: http://mib.helsinki.fi/tutorials/deepmib/1_2DEM_Files.zip
· Unzip the archive
· Start DeepMIB (MIB->Menu->Tools->Deep Learning segmentation)
· Load the config “valid_508px_64pat.mibCfg” file (DeepMIB->Options tab->Config files->Load)

[bookmark: _Toc64290220]Supplementary information for Fig 2B
DNA channel of a high-throughput chemical screen on U2OS cells
Dataset details
The dataset (BBBC039) was acquired from Broad Bioimage Benchmark Collection [4] (https://data.broadinstitute.org/bbbc/BBBC039). It consisted of 197 16-bit annotated images (3 empty images without cells were removed) with dimensions (height x width) of 520 x 696 pixels and 1 color channel. The dataset was randomly split into the training (143 images) and prediction sets (54 images). Training was done using 2D U-Net.
The representative slice, shown in Fig 2B with original filename: IXMtest_J08_s2_w1C146DB1C-05B3-49EF-9C62-1185FD9897AC.tif was selected as the representative one due to multiple touching nuclei.
Preparation of downloaded datasets for DeepMIB
All image processing steps were done in MIB:
1. Load files from masks.zip to MIB
2. Delete channel 2 and channel 3 (Menu->Image->Color channels->Delete channel)
3. Save dataset in TIF format as model.tif
4. Load image files from images.tif
5. Load model.tif file as a model (Menu->Models->Load model)
6. Use the Image Arithmetics tool (Menu->Image->Tools for images->Image arithmetics) to generate model with 3 objects: nuclei, boundaries, and touching boundaries:
Set Input and Output variables: O
Run the following expression:
% define strel element
se = zeros([5 5],'uint8');
se(3,3) = 1;
se = bwdist(se);
se = uint8(se <= max(2));
% generate masks for each material
M1 = zeros(size(O), 'uint8');
M2 = zeros(size(O), 'uint8');
M3 = zeros(size(O), 'uint8');
M1(O==1) = 1;
M2(O==2) = 1;
M3(O==3) = 1;
% assign nuclei
O(O>0) = 1;
% assign boundary
O(M1-imerode(M1, se) == 1) = 2;
O(M2-imerode(M2, se) == 1) = 2;
O(M3-imerode(M3, se) == 1) = 2;
% assign touching boundaries
M = imdilate(M1, se);
O(M2 & M) = 3;
O(M3 & M) = 3;
M = imdilate(M2, se);
O(M1 & M) = 3;
O(M3 & M) = 3;
M = imdilate(M3, se);
O(M1 & M) = 3;
O(M2 & M) = 3;

7. Rename materials to: Nuclei, Boundary, TouchingBoundary
8. Delete empty slices (Menu->Dataset->Slice->Delete slice): 69 (IXMtest_F13_s7_w13C1B1D8C-293E-454F-B0FD-6C2C3F9F5173.tif), 139 (IXMtest_L01_s2_w1E5038251-DBA3-44D0-BC37-E43E2FC8C174.tif), 146 (IXMtest_L10_s6_w12D12D64C-2639-4CA8-9BB4-99F92C9B7068.tif)
9. Save dataset (Menu->File->Save as) in TIF format to a new directory using: “use original filenames” and “2D sequence” as options.
10. Save model to the same directory using *.model format (Menu->Models->Save model as)
11. To randomly split dataset for training and prediction we used Rename and shuffle tool of MIB (Menu->File->Rename and shuffle->Rename and shuffle): random seed: 0, number of output directories: 4, include model: on. We generated 4 sets: 3 of those sets (143 images in total) were combined into 1_Training directory and 4th set (54 images) to 2_Prediction.
Network training
	Network settings: 2D U-Net

	Input patch size:
	252 252 1 1
	NumFirstEncoderFilters:
	32

	Padding:
	valid
	Filter size:
	3

	Number of classes:
	4
	Segmentation layer:
	dicePixelCustomClassificaionLayer

	Encoder depth:
	3
	Augmentation:
	on

	Patches per image:
	32
	Input layer normalization:
	zscore

	Mini batch size:
	4
	Validation fraction:
	0.25

	Augmentation settings

	Fill value
	0
	RandScale:
	0.9 1.1

	RandXReflection:
	on
	RandXScale:
	1 1

	RandYReflection:
	on
	RandYScale:
	1 1

	RandRotation:
	-20 20
	RandXShear:
	-10 10

	
	
	RandYShear:
	-10 10

		
	Training settings

	SolverName
	sgdm
	LearnRateDropFactor:
	0.1

	MaxEpoch:
	50
	L2Regularization:
	0.0001

	Shuffle:
	every-epoch
	Momentum:
	0.9

	InitialLearnRate:
	0.005
	ValidationFrequency:
	400

	LearnRateSchedule:
	piecewise
	Plots:
	training-progress

	LearnRateDropPeriod:
	10
	
	

Training progress plot:
[image:]
Timing: training: 1h 45min 52sec; prediction: 38.0 seconds for 54 images (520x696 pixels, 0.70 image/sec)
Evaluation scores:
	Dataset metrics

	GlobalAccuracy
	MeanAccuracy
	MeanIoU
	WeightedIoU
	MeanBFScore

	0.977084254
	0.860487336
	0.73808
	0.960118779
	0.935740352

	Class metrics

	
	Accuracy
	IoU
	MeanBFScore

	Exterior
	0.992293498
	0.986306968
	0.998579

	Nuclei
	0.945271161
	0.921782612
	0.99788

	Boundary
	0.819574456
	0.63776319
	0.996986

	TouchingBoundary
	0.684810227
	0.406470921
	0.749517

	
	
	
	

[image:]

DeepMIB project and installation instructions:
The full project directory is available via this link: http://mib.helsinki.fi/tutorials/deepmib/2_2DLM_Files.zip
· Unzip the archive
· Start DeepMIB (MIB->Menu->Tools->Deep Learning segmentation)
· Load the config “valid_252px_32patches_50ep.mibCfg” file (DeepMIB->Options tab->Config files->Load)

[bookmark: _Toc64290221]Supplementary information for Fig 2C
FIB-SEM electron microscopy dataset of the CA1 hippocampus.
Dataset details
The dataset was collected by Graham Knott and Marco Cantoni. The full dataset as well as two sub-volumes with the segmented ground truth are publicly available from the CVLAB, EPFL website: https://www.epfl.ch/labs/cvlab/data/data-em
The training set [5] consisted of 165 8-bit annotated sections with dimensions (height x width) of 768x1024 pixels and 1 color channel acquired with isotropic resolution of 5x5x5 nm/voxel (blue box in Fig 2C). The test dataset (green box in Fig 2C), which was used for evaluation of the network performance, has the same dimensions. The image in Fig 2C shows prediction of mitochondria for the full 3D-EM dataset with dimensions: 2048 x 1536 x 1065 pixels. The training was done using 3D U-Net.
The representative slice, shown in Fig 2C comes from the middle of the large dataset and has index 490.
Preparation of downloaded datasets for DeepMIB
All image processing steps were done in MIB:
1. Load training sub-volume (training.tif) to MIB
2. Load ground truth for training sub-volume (training_groundtruth.tif) as model.
3. Because mitochondria are encoded with index 255 we did the following operation:
· selected material 255, in the Segmentation table of MIB
· copied it to the Selection layer (Alt+A key shortcut)
· created a new model (Menu->Models->New model)
· added a new material “mitochondria” (the “+” button in the Segmentation panel)
· moved the Selection layer to this new material (Shift+A key shortcut)
4. Save the model into the same directory in *.model format
5. Repeat steps: 1-4 for the prediction dataset, but save it to 2_Prediction directory
Network training
	Network settings: 3D U-Net

	Input patch size:
	128 128 128 1
	NumFirstEncoderFilters:
	32

	Padding:
	valid
	Filter size:
	3

	Number of classes:
	2
	Segmentation layer:
	dicePixelCustomClassificaionLayer

	Encoder depth:
	2
	Augmentation:
	on

	Patches per image:
	256
	Input layer normalization:
	zerocenter

	Mini batch size:
	1
	Validation fraction:
	0 (validation was not used)

	Augmentation settings

	RandXReflection:
	on
	Fraction:
	0.8

	RandYReflection:
	on
	Rotation90:
	on

	RandZReflection:
	on
	ReflectedRotation90:
	on

		
	Training settings

	SolverName
	sgdm
	LearnRateDropFactor:
	0.1

	MaxEpoch:
	stopped at 176
	L2Regularization:
	0.0001

	Shuffle:
	every-epoch
	Momentum:
	0.9

	InitialLearnRate:
	0.005
	ValidationFrequency:
	400

	LearnRateSchedule:
	none
	Plots:
	training-progress

	LearnRateDropPeriod:
	10
	
	

Training progress plot:[image:]

Timing:
· training: 22 hours 4 mins 53 sec
· prediction: 2 mins 12 seconds for the test volume (768x1024x165 voxels); 58 mins for the full dataset (2048 x 1536 x 1065 voxels)
Evaluation scores:
	Dataset metrics

	GlobalAccuracy
	MeanAccuracy
	MeanIoU
	WeightedIoU
	MeanBFScore

	0.990589859
	0.955705329
	0.91403
	0.982031557
	0.958768537

	Class metrics

	
	Accuracy
	IoU
	MeanBFScore

	Exterior
	0.994733515
	0.990108517
	0.983299

	Mitochondria
	0.916677143
	0.837958305
	0.934238

[image:]
DeepMIB project and installation instructions:
The full project directory is available via this link: http://mib.helsinki.fi/tutorials/deepmib/3_3DEM_Files.zip
· Unzip the archive
· Start DeepMIB (MIB->Menu->Tools->Deep Learning segmentation)
· Load the config “NoValidation_valid_Aug_128px_256pat.mibCfg” file (DeepMIB->Options tab->Config files->Load)

The archive includes the trained network and only two small subvolumes. The full dataset is available directly from the CVLAB website.

[bookmark: _Toc64290222]Supplementary information for Fig 2D
Inner hair cells of mouse inner ear
Dataset details
The dataset was kindly provided by Kuu Ikäheimo and Ulla Pirvola from the Auditory Physiology group, University of Helsinki. The sample preparation and imaging procedure are described in [6].
The dataset has 70 16-bit sections acquired with voxel size of 0.1625 x 0.1625 x 0.3 µm and dimensions (height x width) 2048 x 2048 and 2 color channels:
• channel 1: (blue), CtBP2 staining of nuclei and ribbon synapses
• channel 2: (red), myosin 7a staining, highlighting inner and outer hair cells
The dataset was processed as described below into four datasets: for training, validation, testing and full dataset for prediction:
· training dataset (height x width x depth x colors): 392 x 438 x 70 x 2
· validation dataset (height x width x depth x colors): 279 x 234 x 70 x 2
· test dataset (height x width x depth x colors): 273 x 367 x 70 x 2
· full dataset (height x width x depth x colors): 2048 x 2048 x 70 x 2
The training was done using 3D U-Net Anisotropic (S1 Fig), which is optimal for volumes with anisotropic voxels

Image processing
1. Load the provided dataset in MIB
2. Save dataset using Amira Mesh format (full dataset)
3. Crop the dataset in three various areas and use those crops as volumes for training (40x_OrganCorti_Training _2col.am), validation (40x_OrganCorti_Validation _2col.am) and testing (40x_OrganCorti_Testing _2col.am) and save them
4. Segment the training, validation and testing volumes in MIB to create ground truth models

Network training
	Network settings: 3D U-Net Anisotropic

	Input patch size:
	136 136 64 2
	NumFirstEncoderFilters:
	32

	Padding:
	same
	Filter size:
	3

	Number of classes:
	5
	Segmentation layer:
	dicePixelCustomClassificaionLayer

	Encoder depth:
	3
	Augmentation:
	on

	Patches per image:
	96
	Input layer normalization:
	zerocenter

	Mini batch size:
	1
	Validation fraction:
	0.5

	Augmentation settings

	RandXReflection:
	on
	Fraction:
	0.8

	RandYReflection:
	on
	Rotation90:
	on

	RandZReflection:
	on
	ReflectedRotation90:
	on

		
	Training settings

	SolverName
	sgdm
	LearnRateDropFactor:
	0.1

	MaxEpoch:
	120
	L2Regularization:
	0.0001

	Shuffle:
	every-epoch
	Momentum:
	0.9

	InitialLearnRate:
	0.005
	ValidationFrequency:
	400

	LearnRateSchedule:
	none
	Plots:
	training-progress

	LearnRateDropPeriod:
	10
	
	

Training progress plot:
[image:]

Timing:
· training: 8 hours 43 mins 33 sec
· prediction (with overlapping tiles): 20 seconds for the test volume (273x367x70 voxels); 9 mins 19 sec for the full dataset (2048x2048x70 voxels)
Evaluation scores:
	Dataset metrics

	GlobalAccuracy
	MeanAccuracy
	MeanIoU
	WeightedIoU
	MeanBFScore

	0.981958887
	0.9424709
	0.87389
	0.965212776
	0.976557523

	Class metrics

	
	Accuracy
	IoU
	MeanBFScore

	Exterior
	0.991696108
	0.982727078
	0.996353

	Nuclei
	0.990488582
	0.882292562
	0.926482

	Cells
	0.965181014
	0.933074763
	0.993509

	Syn
	0.944073047
	0.76847526
	0.994073

	NucleiOthers
	0.82091575
	0.802885266
	0.97237

[image:]
DeepMIB project and installation instructions:
The project directory (without the full dataset) is available via this link: http://mib.helsinki.fi/tutorials/deepmib/4_3DLM_Files.zip
· Unzip the archive
· Start DeepMIB (MIB->Menu->Tools->Deep Learning segmentation)
· Load the config “InnerEar3D_Hybrid_Same_136x64px_120ep.mibCfg” file (DeepMIB->Options tab->Config files->Load)

[bookmark: _Toc64290223]References:

1. Belevich I, Joensuu M, Kumar D, Vihinen H, Jokitalo E. Microscopy Image Browser: A Platform for Segmentation and Analysis of Multidimensional Datasets. Plos Biology. 2016;14(1):e1002340. doi: 10.1371/journal.pbio.1002340. PubMed PMID: WOS:000371882900009.
2. Cardona A, Saalfeld S, Preibisch S, Schmid B, Cheng A, Pulokas J, et al. An integrated micro- and macroarchitectural analysis of the Drosophila brain by computer-assisted serial section electron microscopy. PLoS Biol. 2010;8(10):e1000502. Epub 2010/10/20. doi: 10.1371/journal.pbio.1000502. PubMed PMID: 20957184; PubMed Central PMCID: PMCPMC2950124.
3. Arganda-Carreras I, Turaga SC, Berger DP, Ciresan D, Giusti A, Gambardella LM, et al. Crowdsourcing the creation of image segmentation algorithms for connectomics. Front Neuroanat. 2015;9:142. doi: 10.3389/fnana.2015.00142. PubMed PMID: WOS:000365846500001.
4. Ljosa V, Sokolnicki KL, Carpenter AE. Annotated high-throughput microscopy image sets for validation. Nat Methods. 2012;9(7):637. Epub 2012/06/30. doi: 10.1038/nmeth.2083. PubMed PMID: 22743765; PubMed Central PMCID: PMCPMC3627348.
5. Lucchi A, Smith K, Achanta R, Knott G, Fua P. Supervoxel-Based Segmentation of Mitochondria in EM Image Stacks With Learned Shape Features. Ieee T Med Imaging. 2012;31(2):474-86. doi: 10.1109/Tmi.2011.2171705. PubMed PMID: WOS:000300197500027.
6. Herranen A, Ikaheimo K, Lankinen T, Pakarinen E, Fritzsch B, Saarma M, et al. Deficiency of the ER-stress-regulator MANF triggers progressive outer hair cell death and hearing loss. Cell Death Dis. 2020;11(2):100. Epub 2020/02/08. doi: 10.1038/s41419-020-2286-6. PubMed PMID: 32029702; PubMed Central PMCID: PMCPMC7005028.

16

image1.png
[@ Training P - o
Training Progress (19-May-2020 23:56:10)
Results
Valigation accuracy: 20.89%
Training finished: Reachedfinal teration
100 —
Training Time.
L L ST it i Starttime: 19-M2y-2020 23:56:10
Elapsedtime: 296 min 17 sec
Training Cycle
Epoch: 50050
Heration 20000
T
1 Validation
g wll s anserions
F Patience: nt
g o
3 50 Other Information
< Hardware resource: single GPU
4 Leaming rate schedule: Piecewise.
Learming rat: 5007
o
.
2| H Learn more
10~
| | | | | | | |
1 2 3 4 5 6 7 8
lteration x10%
Accuracy

Loss

Trairing (smoothed)

Trairing

— ~@— - Vaiidation

Loss

Trairing (smoothed)

Trairing

Iteration 10t — -8~ - Vaiidation

image2.png
4] Training Progress (26-May-2020 22:0108)

100

70

Accuracy (%)

Training Progress (26-May-2020 22:01:08)

® Final

05

Loss

15

Iteration

35

x10%

Iteration

x10%

Results.
Validation accuracy: 97.80%

Training finished: Reached inal fteration
Training Time

Starttime: 26-11ay-2020 22:01:08
Elapsed time: 105 min 52 sec
Training Cycle

Epoch 50050

Heration: 42800

Validation

Frequency: 400 iterations
Patience: Inf

Other Information

Hardware resource: Single GPU

Leamning rate schedule: Piecewise

Leamning rate: 5607

Fl Leammore

Accuracy
Trairing (smoothed)

Trairing

— ~@— - Vaiidation

Loss
Trairing (smoothed)
Trairing

— ~@— - Vaiidation

image3.emf
E

x

t

e

r

i

o

r

N

u

c

l

e

i

B

o

u

n

d

a

r

y

T

o

u

c

h

i

n

g

B

o

u

n

d

a

r

y

Predicted Class

Exterior

Nuclei

Boundary

TouchingBoundary

T

r

u

e

C

l

a

s

s

Normalized Confusion Matrix (%)

0.175

10.19

6.481

0.01518

7.174

15.91

0.7142

4.516

9.127

0.04129

0.7818

0.6782

68.48

99.23

94.53

81.96

10

20

30

40

50

60

70

80

90

image4.png
4] Training Progress (27-May-2020 18:10:54)

Accuracy (%)

10

Training Progress (27-May-2020 18:10:54)

05

Loss

15

Iteration

Iteration

35

45
x10%

x10%

Results.
Validation accuracy: A

Training finished: ‘Stopped manually
Training Time

Starttime: 27-May-2020 18:10:54
Elapsed time: 1324 min 53 sec
Training Cycle

Epoch 17601200

Heration: 45001

Validation

Frequency: A

Patience: NA

Other Information

Hardware resource: Single GPU

Leamning rate schedule: Constant

Leamning rate: 0.005

H Leam more

Accuracy
Trairing (smoothed)
Trairing

— ~@— - Vaiidation

Loss
Training (smoothec)
Training
— ~&— - Vaidaton

image5.emf
Exterior Mitochondria

Predicted Class

Exterior

Mitochondria

T

r

u

e

C

l

a

s

s

Normalized Confusion Matrix (%)

8.332

0.5266 99.47

91.67

10

20

30

40

50

60

70

80

90

image6.png
4] Training Progress (07-Jun-2020 21:5555)

ing Progress (07-Jun-2020 21:55:55)
Results
Valigation accuracy: 97.00%
Training finished: Reachedfinal teration
100 —
Final Training Time.
I Starttime: 07-Jun-2020 21:55:55
OF 1 Elapsed time: 523 min 33 sec
!
sl ! Training Cycle
! Epoch: 12001120
ot Heration 11520
i
h Validation
S Frequency: 400 iterations.
ES ! Patience: nt
.
3 50 ,' Other Information
< h Hardware resource: single GPU
w0h Leaming rate schedule: Constant
" Learning rate: 0005
a0l
T
"
/B H Learn more
]
10—
| | | | |
2000 4000 6000 8000 10000
lteration
\
15
\
” \
8 \ Accuracy
= Traiing (smoothed)
\ - Traiing
\ — -8~ - Vaidation
05
Loss
Trairing (smoothed)
o Training
o 2000 4000 6000 8000 10000
— -8~ - Vaidation
lteration

image7.emf
Exterior Nuclei Cells Syn NucleiOthers

Predicted Class

Exterior

Nuclei

Cells

Syn

NucleiOthers

T

r

u

e

C

l

a

s

s

Normalized Confusion Matrix (%)

0.04753

2.441

0.8935

9.828

0.03133

0.635

0.009783

7.86

0.6695

0.9036

4.689

0.219

0.04255

0

0.4052

0.0009544

0.08698

0

0.0005167

0

99.17

99.05

96.52

94.41

82.09

0

10

20

30

40

50

60

70

80

90

