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S2 Appendix. Parameters calibration

To calibrate the parameters of the proposed models, we will restrict ourselves to
experimental measurements from the literature coming from intact cardiac cells since
the skinning procedure alters in a significant (and only partially understood) manner
the activation and force generation dynamics [1–3]. Moreover, thanks to the technique
of flura-2 fluorescence, it is nowadays possible to measure the intracellular calcium
concentration without depriving the cell of its membrane, and it is also possible to
inhibit the sarcoplasmic reticulum calcium uptake by cyclopiazonic acid, so that the
calcium level can be controlled without the need of skinning the cells [3, 4].

Calibration of the XBs rates

In [5] we have shown that the parameters of the distribution-moments equations
describing the XB dynamics can be calibrated starting from five quantities, that are
described in the following. Under isometric conditions, we consider the isometric tension
T iso

a := aXBµ
1 and the fraction of attached XBs µ0

iso := µ0, where µ0 and µ1 are the
steady-state solution for v = 0. The force-velocity relationship is characterized by the
maximum shortening velocity vmax, and by v0, its intersection with the axis Ta = 0 of
the tangent of the curve in isometric conditions, defined as:

v0 := −
(
∂T a(v)/T iso

a

∂v

∣∣∣∣
v=0

)−1

,

where T a(v) denotes the steady-state tension for velocity v. Finally, as discussed in [5],
the response to fast inputs is characterized, in the small-velocity regime, by the
normalized slope of the tension-elongation curve after a fast step. Such quantity is
defined as follows: by applying a step in length ∆L to an isometrically contracted
muscle in a small time interval ∆t, we define by Ta(∆t) the tension recorded after the
step is applied, and we define the normalized stiffness as:

k̃2 := − ∂Ta(∆t)/T iso
a

∂∆L

∣∣∣∣
∆L=0

.

As discussed in [5], when the small-velocity regimes is considered, the quantity k̃2

corresponds to the slope of the T2-L2 relationship.
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Parameter Value Units Reference
T iso

a 120 kPa [4]
µ0

iso 0.22 - [8]
vmax 8 s−1 [9]
v0 2 s−1 [9]

k̃2 66 - [9]

Table A. List of the experimental data used for model calibration.

In conclusion, as shown in [5], by acting on the five parameters µ0
fP

, µ1
fP

, r0, α and

aXB we can fit experimentally measured values concerning the isometric solution (T iso
a

and µ0
iso), the force-velocity relationship (vmax and v0) and the fast transients response

(k̃2). All the above mentioned experimental setups are such that the thin filament
activation machinery can be considered in steady-state. Indeed, [Ca2+]i is constant in
all the cases and, concerning SL: it is also constant under isometric conditions; constant
shortening experiments are typically performed in the plateau region of the force-length
relationship, and thus the effect of changes in SL is irrelevant; fast transient
experiments are carried out at a time-scale such that the activation variables can be
considered constant, since they are characterized by a much slower dynamics [6, 7].

Therefore, in these cases, the values of Pi, k̃
PN
T,i and k̃NPT,i can be considered as fixed in

Eq. (11) (and similarly in Eq. (21)).
We notice that, while for the models considered in [5] the relationship between the

five parameters and the five experimentally measured values can be analytically
inverted, in this case we find the values of the parameters with a numerical strategy.
Specifically, to find the steady-state solution we solve Eq. (11) by setting to zero the
time derivative terms; we consider the exact solution after the fast transient (the linear
ODE system (11) can be solved analytically); we approximate the derivative appearing
in the definition of v0 and k̃2 by finite differences. Finally, we solve, for the five
parameters, the nonlinear system of equations linking the five measured values with the
parameters themselves. With this aim we employ the Newton-Raphson method, by
approximating the Jacobian matrix by means of finite differences.

The experimental data used to calibrate the model are reported in Table S2-1,
together with a reference to the source in literature. As we mentioned before, we employ
data coming from room-temperature intact cardiac rat cell, apart from µ0

iso (acquired
from skeletal frog muscle), for which we did not find measurements from cardiac
muscles. However, as shown in [5], this variable only affects the value of the microscopic
variables (i.e. µpi,α), but not that of the predicted active tension Ta.

We notice that the constants vmax, v0 and k̃2 are normalized with respect to T iso
a

and are thus valid for a wide range of activation levels (see Introduction). Conversely,
the value of T iso

a is associated with a SL in the plateau region and to saturating calcium
concentration. Therefore, when we calibrate the parameters we set [Ca2+]i = 10 µM and
SL = 2.2 µm.

Calibration of the RUs rates (steady-state)

The steady-state characterization of the muscle tissue activation is represented by the
force-calcium and force-length relationships (see Introduction), whose main features are
the behavior for SL in the plateau region (characterized by the tension for saturating
calcium T iso

a , the calcium sensitivity EC50 and the cooperativity coefficient nH) and the
effect of SL (on the saturating tension T iso

a and on the calcium sensitivity EC50).
We recall that, thanks to our strategy, the tension for saturating calcium

concentrations T iso
a in the plateau region of SL is automatically fitted. The effect of kd
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is that of shifting the force-calcium curves with respect to the log [Ca2+]i axes since it
only appears in combination with [Ca2+]i in the model equations. Therefore, the value
of kd can be easily calibrated to match the experimental data as it only affects EC50.
The effect of γ, on the other hand, is that of tuning the amount of cooperativity (indeed,
it acts on nH). The role of the remaining parameters (Q and µ) is more involved and
cannot be easily decoupled, as they affect the cooperativity, calcium sensitivity, and the
asymmetry of the force-calcium relationship below and above EC50 [10]. Moreover, in
the SE-ODE case, they also act on the SL-driven regulation on calcium sensitivity.

In the following we set µ = 10, coherently with the fact that the experimentally
measured dissociation rate of Tn from calcium varies of one order of magnitude in
different combinations [11]. For the SE-ODE model, we set γ, Q and kd, to fit the
steady-state force-calcium measurements of [4] (referred to the two different values of
SL of 1.85 and 2.15 µm) from intact rat cardiac cells at room temperature.

Calibration of the RUs rates (kinetics)

We consider the isometric twitches of intact rat cardiac muscle fibers reported in [12] for
different values of SL, and with [Ca2+]o = 1.0 mM. Since the corresponding calcium
transients are not reported, we consider the calcium transient reported in [13] for the
same muscle preparation. As the reported trace is much affected by noise, we fit it with
the following idealized transient [14]:

[Ca2+]i(t) =

c0 t < tc0,

c0 + cmax−c0
β

[
e
− t−t

c
0

τc1 − e−
t−tc0
τc2

]
t ≥ tc0 ,

where

β =

(
τ c1
τ c2

)−( τc1
τc2
−1

)−1

−
(
τ c1
τ c2

)−(1− τ
c
2
τc1

)−1

,

with the constants values cmax = 1.35 µM, tc0 = 0.05 s, τ c1 = 0.02 s, τ c2 = 0.19 s.
Then, we sample the candidate parameters space

(kbasic, koff) ∈ [0, 80 s−1]× [0, 300 s−1] by a MC strategy, for each parameters value we
compute the tension transients corresponding to SL = 1.90, 2.05 and 2.20 µm and we
compare them with the experimental measurements from [12]. We consider the
following discrepancy metrics, where T i,mod

a (t) denotes the tension predicted by the
model for the i-th value of SL and T i,exp

a (t) denotes the experimentally measured one:

EL2 :=

√√√√ 3∑
i=1

∫ T

0

∣∣∣T i,mod
a (t)− T i,exp

a (t)
∣∣∣2 dt,

Epeak :=

√√√√ 3∑
i=1

∣∣∣∣∣ sup
t∈[0,T ]

T i,mod
a (t)− sup

t∈[0,T ]

T i,exp
a (t)

∣∣∣∣∣
2

.

The first metric coincides with the L2 error over time, while the second one evaluates
the error of the predicted force peak. We notice indeed that the parameters kbasic and
koff also determine the force peak attained during a sarcomere twitch: the most rapid
the tissue activation is, the more the force-calcium curve stays close to the steady-state
curve and thus it reaches higher force values before the relaxation begins. As criterion to
select the best parameters values, we consider as overall metric a weighted combination
between the two, given by Etot = (E2

L2 + w2
peakE

2
peak)1/2, where we set wpeak = 5.

The obtained values of the discrepancy metric Etot in the parameters space for both
the SE-ODE and the MF-ODE models are reported in the below picture.
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Fig A. Discrepancy metric Etot in the parameters space for intact, room-temperature
rat cells, obtained with the SE-ODE model (left) and with the MF-ODE model (right).

We notice that the level curves do not clearly identify an optimal pair (kbasic, koff),
rather these exhibit a wide region in the parameters space producing very similar
results. Given the uncertainty in the measurements of both force and, mostly, calcium,
it makes no sense to select the best parameters by blindly selecting the pair that realizes
the smaller discrepancy from experimental results. Therefore, we supplement the results
of Fig. S2-1 with direct measurements of calcium binding rates to Tn, showing that
kon = koff/kd lies between 50 and 200 µM−1 s−1 [11]. On this basis, we restrict the
region of candidate values and we select the parameters reported in Tab. 3.

The predicted isometric twitches obtained with the selected values of the parameters
are compared with the experimental data in Fig. 15. We notice here that the MF-ODE
model accomplishes a better fit of experimental data than the SE-ODE model. This is
an effect of the phenomenological tuning of kd of Eq. (29), that allows for a significant
increase of calcium sensitivity and, consequently, of twitch duration, for higher values of
SL. Nonetheless, also the SE-ODE model predicts, even if to a lower extent, the
experimentally observed prolongation of twitches at higher SL, without any
phenomenological tuning of the calcium sensitivity.

We notice that there is room for improvement in the calibration of the kinetic
parameters kbasic and koff, which could be better constrained in presence of more
abundant and more reliable experimental data and when a deeper understanding on the
determinants of the kinetics of activation and relaxation will be available. Nevertheless,
the calibration of kbasic and koff for the rat model does not affect the quality of the
human model, since those two parameters are the only ones to be completely
re-calibrated for the human model.

Human model at body temperature

In order to adapt the parameters calibrated from rat data at room temperature to a
body-temperature human model, we first focus on the steady state, to reflect a higher
calcium sensitivity. For this purpose, we employ the data reported in [15], which,
however, refer to skinned cells. In order to estimate the effect of skinning on kd, we
compare the calcium sensitivity measured for room-temperature rat cardiac cells in
skinned [16] and intact preparations [4] at SL = 2.15 µm and we assume that the same
relationship holds for skinned versus intact, body-temperature human cells. Finally, we
rescale the values of kd to reflect the estimated change in calcium sensitivity between
intact, body-temperature human cells and intact, room-temperature rat cells, obtaining
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Species Temperature Preparation SL(µm) EC50(µM) Reference
Rat Room Skinned 2.15 3.51 [16]
Rat Room Intact 2.15 0.68 [4]
Human Body Skinned 2.00 1.72 [15]
Human Body Skinned 2.20 1.56 [15]

Table B. List of the experimental values used to calibrate the calcium sensitivity for
the human models at body temperature.

the values reported in Tab. 3. The experimental data used in such procedure are listed
in Tab. S2-2.

Since the RUs kinetics may depend on both the species and the temperature, we
re-calibrate the parameters koff and kbasic on the base of the kinetic metrics reported
in [17] (the data are referred to body-temperature human cells). These metrics include
the peak tension T peak

a , the time-to-peak TTP (defined as the time separating the
beginning of force raise and the tension peak) and the relaxation times RT50 and RT95

(defined as the time between the tension peak and 50% and 95% of relaxation,
respectively). Since, as to the best of our knowledge, detailed calcium transients
measurements for intact human cells at body temperature are not currently available,
we employ the synthetic calcium transient predicted by the ToR-ORd model [18]. The
metrics reported in [17] are referred to different values of SL, expressed as fraction of
the optimal sarcomere length (i.e. the length for which an increase of developed force is
compensated by an increase in resting tension), corresponding, according to the authors,
to nearly SL = 2.2 µm. For the calibration, we employ the value associated with 95% of
the optimal length (i.e. 2.09 µm).

Finally, for the calibration of the parameters ruling the XBs cycling, we use the same
values of Tab. S2-1. Therefore, since the calibration depends on the parameters
previously set for the RUs activation, the resulting values of the parameters are slightly
different. We provide in Tab. 3 the full list of parameters for both species
(room-temperature rat and body-temperature human) and for both models (SE-ODE
and MF-ODE).
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