Inferring Tumor Progression in Large Datasets: Supporting Information 2 Mohammadreza Mohaghegh Neyshabouri, Seong-Hwan Jun, Jens Lagergren

Model selection details

The posterior probability of a model length $L \in \mathcal{L}$ given the observation can be written as

$$
p(L \mid Y)=\frac{p(Y \mid L) p(L)}{\sum_{L \in \mathcal{L}} p(Y \mid L) p(L)}
$$

Our uniform prior on the model length corresponds to setting $p(L)=1 /|\mathcal{L}|$, hence, $p(L \mid Y) \propto$ $p(Y \mid L)$. Equation (3) of the paper can be simply derived as follows,

$$
\mathbb{E}_{p(\mathcal{P}, \epsilon, \delta \mid Y, L)}\left[\frac{1}{p(Y \mid \mathcal{P}, \epsilon, \delta, L) p(\epsilon, \delta) p(\mathcal{P} \mid L)}\right]=\int \frac{p(\mathcal{P}, \epsilon, \delta \mid Y, L)}{p(Y \mid \mathcal{P}, \epsilon, \delta, L) p(\epsilon, \delta) p(\mathcal{P} \mid L)} d \mathcal{P} d \epsilon d \delta=\frac{1}{p(Y \mid L)}
$$

The MCMC estimate of the LHS in this equation will be

$$
\mathbb{E}_{p(\mathcal{P}, \epsilon, \delta \mid Y, L)}\left[\frac{1}{p(Y \mid \mathcal{P}, \epsilon, \delta, L) p(\epsilon, \delta) p(\mathcal{P} \mid L)}\right] \approx \frac{1}{I} \sum_{i=1}^{I} \frac{1}{p\left(Y \mid \mathcal{P}_{i}, \epsilon_{i}, \delta_{i}, L\right) p\left(\epsilon_{i}, \delta_{i}\right) p\left(\mathcal{P}_{i} \mid L\right)} .
$$

One potential problem is in the computation of $p\left(\mathcal{P}_{i} \mid L\right)$, where we need to calculate the cardinality of the space of valid pathway progression models of length $L:|\mathcal{X}(L)|$. Although enumeration over $\mathcal{X}(L)$ appears intractable, there is a closed-form formula for computing its cardinality, $|\mathcal{X}(L)|$. Given a set of N genes, a valid progression of length L consists of L non-empty driver pathways and a set of passenger genes. Let $f_{N}(L)$ denote the number of valid ways to allocate N genes to L non-empty driver pathways and the set of passengers (which can remain empty). We can calculate $f_{N}(L)$ using the recursive formula

$$
f_{N}(L)=(L+1)^{N}-\sum_{i=1}^{L}\binom{L}{i} f_{N}(L-i)
$$

Note that $f_{N}(L)$ is the total number of possible assignments, $(L+1)^{N}$, minus the number of invalid assignments. We count the number of invalid assignments with i empty driver pathways separately. There exist $\binom{L}{i}$ different choices for a set of i driver pathways to keep empty. For each case, we can have $f_{N}(L-i)$ different valid assignment of genes to the remaining pathways, ensuring that none of the $L-i$ remaining driver pathways are empty.

