# S5. Appendix. Determination of an oxygen transport Sherwood number 

Donald A. Belcher ${ }^{1}$, Alfredo Lucas ${ }^{2}$, Pedro Cabrales ${ }^{2}$, Andre F. Palmer ${ }^{1}$,<br>1 William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA<br>2 Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA

The oxygen $\left(\mathrm{O}_{2}\right)$ transport Sherwood number $\left(\mathrm{Sh}_{\mathrm{O}_{2}}\right)$, sometimes referred to as the $\mathrm{O}_{2}$ mass transport Nusselt number, represents the ratio of the convective mass transfer to the rate of diffusive mass transport. This dimensionless number is especially useful for calculating the transvascular mass transport coefficient that has been described in various experimental studies [1,2]. The equation to calculate the $S h_{O_{2}}$ is shown in Eq 1

$$
\begin{equation*}
S h_{O_{2}}=\frac{2 r_{v e s} J_{w}}{\left(C_{O_{2}, \text { tissue }}-C_{O_{2}, \text { plasma }}\right) \cdot D_{O 2, \text { plasma }}} \tag{1}
\end{equation*}
$$

To estimate how PolyhHb modulates $S h_{O_{2}}$ in a single vascular segment we prepared a finite element model in COMSOL multiphysics as previously described [3]. To evaluate how individual properties of a vessel can affect $S h_{O_{2}}$ after various doses, we performed a parametric sweep over parameters that led to changes in overall $\mathrm{O}_{2}$ transfer rate ( $k_{0}$ ) determined during sensitivity analysis. The values for this sweep are shown in Table A in S5 Appendix S5. After the sweep was performed, the resulting values were numerically evaluated with nonlinear least squares
regression to determine a correlation between varied parameters and $S h_{O_{2}}$. The correlation was selected to match the correlation empirically determined by Welter et al. [4]. Specifically, we sought to determine the fitting parameters baseline $S h_{O_{2}}$ parameter $\left(p_{1}\right)$, offset $S h_{O_{2}}$ parameter $\left(p_{2}\right)$, and gradient $S h_{O_{2}}$ parameter $\left(p_{3}\right)$ shown in Eq 2 .

$$
\begin{equation*}
S h_{O_{2}}=p_{1}\left(1-p_{2} e^{\left(\frac{r_{v e s}}{p_{1}}\right)}\right) \tag{2}
\end{equation*}
$$

Table A. Varied parameters for determination of the $S h_{O_{2}}$ correlation.

| Parameter | Values | Unit |
| :--- | :---: | :---: |
| transfusion volume equal to a set percentage of the blood volume | $0,10,20,30,40$ | $\%$ |
| $(T L \%)$ |  | $\mathrm{cm} / \mathrm{s}$ |
| fluid velocity $(\bar{v})$ | $0.01,0.1,1$ | $\mu \mathrm{~m}$ |
| blood vessel radius $\left(r_{v e s}\right)$ <br> hematocrit $(H C T)$ <br> inlet partial pressure of dissolved $\mathrm{O}_{2}\left(\mathrm{pO}_{2}\right)$ of the vessel $\left(p O_{2, i n}\right)$ | $1,5,10,20,30,40,50,60,70,80$ | mm Hg |

From our previous work with a modified Krogh tissue cylinder (KTC) model, we know that the polymerized human hemoglobin $(\mathrm{hHb})(\mathrm{PolyhHb})$ enhanced $\mathrm{O}_{2}$ flux varies with $\mathrm{pO}_{2}$ of the vascular segment [3]. This is in contrast to unsupplemented blood vessels wherein in the $\mathrm{O}_{2}$ flux is relatively constant as a function of the vessel $\mathrm{pO}_{2}$. Therefore, the previous definition of the $S h_{O_{2}}$, also referred to as the $\mathrm{O}_{2}$ mass transport Nusselt number, defined by Welter et. al does not apply for PolyhHb transfusion [4].
Before determining the functions that describe each of the $S h_{O_{2}}$ parameters, we performed a sensitivity analysis using a false detection rate $(F D R)$ test on a parameteric sweep of the KTC data. This allowed us to determine what variables should be examined for use in a $S h_{O_{2}}$
correlation. During the estimation of the overall $\mathrm{Sh}_{\mathrm{O}_{2}}$ we found that $r_{v e s}, H C T, p O_{2, i n}$, and the top-load $T L \%$ each had a substantial effect on the $S h_{O_{2}}$ ( $F D R$ greater than 0.1). Despite having a substantial impact on $k_{0}$, the $\bar{v}$ had a minor effect on $S h_{O_{2}}$ compared to the other factors (FDR less than 0.1 ). We then examined how each of the varied parameters affected each of the fitted $S h_{O_{2}}$ parameters ( $p_{1}, p_{2}, p_{3}$ ). Beginning with $p_{2}$, we found that this value was independent of each variable ( $F D R$ less than 0.1 ). Nonlinear regression was used to determine that $p_{2}$ was approximately equal to $0.75 \pm 0.01$. Continuing with the examination of $p_{1}$, we found that $r_{v e s}$, $H C T$, and $p O_{2, i n}$ each had a significant effect ( $F D R$ greater than 0.1 ). For the case where there was no $\mathrm{O}_{2}$ binding species in solution (ie. only dissolved $\mathrm{O}_{2}$ in the plasma), $p_{1}$ was approximately equal to 4.6 . When $\mathrm{O}_{2}$ carriers were present in solution, we found that $p_{1}$ increased by a value proportional to the amount of $\mathrm{O}_{2}$ carrier and an equation in the form of either $p_{O_{2}, \text {, } n}^{-3}+p_{O_{2}, \text { in }}^{-2}$ for unsupplemented vessels or $p_{O_{2}, i n}^{-2}+p_{O_{2}, \text { in }}^{-1}$ after PolyhHb transfusion. Given this information, we propose that the first derivative of the equilibrium saturation $(Y)$ with respect to the $\mathrm{pO}_{2}$ ( Equation 3 ) appears to be appropriate to describe $p_{1}$. Applying nonlinear regression to the full simulated data set we found that Equation 4 can be used to calculate $p_{1}$. This indicates that $\mathrm{O}_{2}$ offloading is likely a function of the total $\mathrm{O}_{2}$ available from the plasma, red blood cells (RBCs), and hemoglobin ( Hb )-based $\mathrm{O}_{2}$ carriers ( HBOCs ) at a given $\mathrm{pO}_{2}$. This $\mathrm{O}_{2}$ dependence may explain the controversy in the literature regarding changes in the $S h_{O_{2}}$ in the different systems [5,6]. We also anticipate that the coefficients that adjust the first derivative of $Y$ with respect ot the vessel $\mathrm{pO}_{2}$ are likely related to the total $\mathrm{O}_{2}$ available from $\mathrm{O}_{2}$ carriers when fully saturated divided by the solubility of $\mathrm{O}_{2}$ in plasma.

$$
\begin{gather*}
\frac{d Y}{d p O_{2}}=\frac{n \cdot P_{50}^{n} \cdot p O_{2}^{n-1}}{\left(P_{50}^{n}+p O_{2}^{n}\right)^{2}}  \tag{3}\\
p_{1}=4.6+68 \cdot H C T \cdot \frac{d Y_{H b}}{d p O_{2}}+279 \cdot T L \% \cdot \frac{d Y_{H B O C}}{d p O_{2}} \tag{4}
\end{gather*}
$$

Determining the value for $p_{3}$ presented an interesting challenge due to drastically varying performance under normoxic and hypoxic conditions. Through analysis of varying logarithmic and exponential equations, we determined that a combination of an inverse and logarithmic $\mathrm{pO}_{2}$ dependent equation would approximate the behavior of $p_{3}$. Nonlinear regression analysis was used to estimate the coefficients shown in equation 5.

$$
\begin{equation*}
p_{3}=\frac{a_{1} \cdot T L \%-30 \cdot H C T+30}{p O_{2}}+(2.2+H C T) \cdot \ln \left(p O_{2}\right) \tag{5}
\end{equation*}
$$

The calculated $S h_{O_{2}}$ as a function of $r_{v e s}$ is shown in Fig A in Appendix S5. The resulting equation allows us to estimate the average $\mathrm{O}_{2}$ flux through the vessel wall $\left(\bar{J}_{w}\right)$ proportional to the gradient between the inter- and intra-vascular $\mathrm{pO}_{2}$. In general, we observed asymptotic behavior as $r_{v e s}$ increases past $50 \mu \mathrm{~m}$. At these large vessel sizes, the $\mathrm{O}_{2}$ gradient is likely negligible compared to $r_{v e s}$. Because of this, we treat these large vessels as large reservoirs of
blood where $\bar{J}_{w}$ is primarily a function of the surface area as described previously [4]. As the vessel size decreases, we observe a downward trend that is similar to the values observed experimentally [1,2]. For the
unsupplemented case, we observe that a local maximum $S h_{O_{2}}$ is observed around the partial pressure of $\mathrm{O}_{2}$ at which $50 \%$ of the hHb or PolyhHb is saturated with $\mathrm{O}_{2}\left(P_{50}\right)$ for hHb in human $\operatorname{RBC}\left(P_{50}=24 \mathrm{~mm} \mathrm{Hg}\right)$. When supplementing with tense quaternary state (T-State) and relaxed quaternary state (R-State) PolyhHb, we observed a continuous increase in $\mathrm{Sh}_{\mathrm{O}_{2}}$ at decreasing $p O_{2, i n}$. For T-State PolyhHb, we observed that this increase began to taper off at extremely low $p O_{2, i n} \mathrm{~s}(<1 \mathrm{~mm} \mathrm{Hg})$ for small vessels $(<50 \mu \mathrm{~m})$. This effect indicates that the $\mathrm{O}_{2}$ delivering capacity of T-State PolyhHb is completely exhausted by the tumor tissue under hypoxic conditions.
In contrast, R-State PolyhHb has a massive increase in $S h_{O_{2}}$ when under these highly hypoxic conditions. This increased offloading likely results from the high $\mathrm{O}_{2}$ affinity of R-State PolyhHb. At 1 mm Hg , R-State PolyhHb still retains approximately $35 \%$ of its maximum $\mathrm{O}_{2}$


Fig A. $S h_{O_{2}}$ correlations as a function of $r_{v e s}$ and $p O_{2, i n}$. (A) $S h_{O_{2}}$ comparisons with experimental and simulated studies by Hellums et al. [1], Moschaendreou et al. [2], Welter et al. [4], and this study. For the simulated data the $p O_{2, i n}$ was set to 40 mm Hg. Also shown is $S h_{O_{2}}$ as a function of $r_{v e s}$ and $p O_{2, i n}$ for (B) unsupplemented blood (C) $20 \%$ top-load with 35:1 T-State PolyhHb, and (D) $20 \%$ top-load with 35:1 R-State PolyhHb. For each of these simulated parameters $H C T=0.45$.
carrying capacity. Under these hypoxic conditions, T-State PolyhHb only retains $2.8 \%$ of its maximum $\mathrm{O}_{2}$ carrying capacity.
Additionally, the resulting non-linear correlation had an adjusted $R^{2}$ of 0.96 compared to data from the modified KTC model. When comparing to previous experimental and simulated data [1,2], the newly developed $S h_{O_{2}}$ correlation had a higher adjusted $R^{2}(0.96)$ compared to the model used by Welter et al. (adjusted $R^{2}(0.92)$ ) [4]. This indicates to us that the newly developed model for the $S h_{O_{2}}$ better describes the performance of unsupplemented blood compared to the previously developed model.
Unfortunately, the experiments needed to validate the hypoxic range of the new $S h_{O_{2}}$ model are susceptible to significant noise due to low $\mathrm{O}_{2}$ readings. Instead, we evaluated the performance of this model with $\mathrm{O}_{2}$ distribution data obtained via intravital microscopy on tumors grown within a chamber window model.

## References

1. Hellums JD, Nair PK, Huang NS, Ohshima N. Simulation of intraluminal gas transport processes in the microcirculation. Annals of Biomedical Engineering. 1995;24(S1):1-24. doi:10.1007/BF02770991.
2. Moschandreou TE, Ellis CG, Goldman D. Influence of tissue metabolism and capillary oxygen supply on arteriolar oxygen transport: A computational model. Mathematical Biosciences. 2011;232(1):1-10. doi:10.1016/J.MBS.2011.03.010.
3. Belcher DA, Ju JA, Baek JH, Yalamanoglu A, Buehler PW, Gilkes DM, et al. The quaternary state of polymerized human hemoglobin regulates oxygenation of breast cancer solid tumors: A theoretical and experimental study. PLoS ONE. 2018;13(2). doi:10.1371/journal.pone. 0191275.
4. Welter M, Fredrich T, Rinneberg H, Rieger H, Hoff DV, Hingorani S. Computational Model for Tumor Oxygenation Applied to Clinical Data on Breast Tumor Hemoglobin Concentrations Suggests Vascular Dilatation and Compression. PLOS ONE. 2016;11(8):e0161267. doi:10.1371/journal.pone. 0161267.
5. Vadapalli A, Pittman RN, Popel AS. Estimating oxygen transport resistance of the microvascular wall. American Journal of Physiology-Heart and Circulatory Physiology. 2000;279(2):H657-H671. doi:10.1152/ajpheart.2000.279.2.H657.
6. Tsai AG, Friesenecker B, Mazzoni MC, Kerger H, Buerk DG, Johnson PC, et al. Microvascular and tissue oxygen gradients in the rat mesentery. Proceedings of the National Academy of Sciences. 1998;95(12):6590-6595. doi:10.1073/pnas.95.12.6590.
