
S1 Text. Classic metrics for quantifying temporal coding in the
auditory system

Various approaches and metrics have been developed to quantify auditory temporal
coding in neurophysiological responses. In this section, we motivate the need for a
unified framework for auditory temporal coding by briefly reviewing these classic
metrics and discussing their benefits and limitations.

Period-histogram based metrics

The ability of AN fibers to follow the temporal structure of an acoustic stimulus has
been known for a long time (Galambos and Davis, 1943). Using tones as stimuli, Kiang
and colleagues showed that AN fibers prefer to discharge spikes around a particular
phase of the stimulus cycle (Kiang et al., 1965). Their analysis was qualitative and
involved the period histogram, which is constructed as the histogram of spike times
modulo the period of one stimulus cycle (e.g., Fig 1D). Rose and colleagues used the
period histogram to quantify the preference of neurons to fire during one half-cycle of a
periodic stimulus (Rose et al., 1967). They introduced a metric, called the coefficient of
synchronization, which is defined as the ratio of the spike count in the most effective
half-cycle to the spike count during the whole stimulus cycle. The coefficient of
synchronization ranges from 0.5 (for a flat period histogram) to 1.0 (for all spikes within
one half-cycle). The coefficient of synchronization does not truly quantify the strength
of phase locking to the stimulus cycle as it does not consider the spread of the period
histogram. For example, two period histograms, one where all spikes occur at the peak
of the stimulus cycle (strong phase locking), and the other where all spikes are
uniformly distributed across one stimulus half-cycle (weak phase locking), will yield the
same coefficient of synchronization of 1.0.

A more sensitive measure of phase locking derived from the period histogram is the
vector strength (VS (Greenwood and Durand, 1955; Goldberg and Brown, 1969)), which
is identical to the synchronization index metric described by Johnson (Johnson, 1980).
VS has been used extensively to quantify phase-locking strength in spike-train
recordings in response to periodic stimuli (Palmer and Russell, 1986; Joris et al., 2004),
including stationary speech (Young and Sachs, 1979). In this framework, each spike is
treated as a complex vector that has a magnitude of 1 and an angle that is defined by
the spike phase relative to the stimulus phase; VS is defined as the magnitude of the
average of all such vectors for spikes pooled across all stimulus repetitions (S1
Appendix). VS is a biased estimator of the “true” vector strength (Mardia, 1972) and
can reach spuriously high values at low spike counts (Yin et al., 2010). This problem is
avoided by using a modification of the vector strength, called the phase-projected vector
strength (V Spp) (Yin et al., 2010). Similar approaches have been used in
electrophysiological studies (Vinck et al., 2011). V Spp differs from V S in that
trial-to-trial phase consistency is also considered in computing V Spp (S1 Appendix).

Overall, the period histogram and metrics derived from it (V S and V Spp) work well
for applications involving stationary signals with periodic TFS (e.g., tones, Fig. 1D),
ENV (e.g., sinusoidally amplitude-modulated noise), or both (e.g., sinusoidally
amplitude-modulated tones, Fig. 1F). However, the period histogram ignores
nonstationary features in the response that arise from the auditory system. For
example, spikes in the first few stimulus cycles are often ignored while constructing the
period histogram to avoid the nonstationary onset response. Similarly, since spikes
corresponding to different stimulus cycles are wrapped onto a single cycle, effects of
adaptation are not captured in the period histogram. Moreover, its application to
nonstationary or aperiodic stimuli (e.g., natural speech) is not straightforward.



Peristimulus-time-histogram (PSTH) based metrics

The single-polarity PSTH, p(t), is constructed as the histogram of spike times pooled
across all stimulus repetitions at a certain bin width (e.g., Fig 1C). As the PSTH shows
the rate variation along the course of the stimulus, it captures the onset as well as
adaption effects in the response (Kiang et al., 1965; Westerman and Smith, 1988). p(t)
has been applied to analyze spike trains recorded in response to periodic signals, both in
the temporal and spectral domains (Young and Sachs, 1979; Delgutte, 1980; Palmer
et al., 1986). A limitation of the p(t)-spectrum is that it is corrupted by harmonic
distortions due to the rectified nature of the PSTH response (Young and Sachs, 1979).
For example, the spectrum of a PSTH constructed using spike trains recorded from an
AN fiber in response to a tone (Fc) can show energy at Fc as well as 2Fc even though
the stimulus itself does not have energy at 2Fc. These issues related to rectifier
distortion can be minimized by using both polarities of the stimulus (S1 Fig). Similar to
the period histogram, the PSTH can also be used to derive phase-locking metrics, such
as V S and V Spp. These synchrony-based metrics have been recently overshadowed by
correlogram-based metrics, which are described next, since the synchrony-based metrics
are limited to periodic signals. In contrast, correlogram-based approaches offer more
general metrics to evaluate temporal coding of both periodic and aperiodic stimuli in
the ENV/TFS dichotomy.

Interspike-interval (ISI) based approaches (e.g., correlograms)

Interspike interval histogram analyses were developed to quantify the correlation
between two spike trains, either from the same neuron or from different
neurons (Hagiwara, 1954; Rodieck et al., 1962; Perkel et al., 1967a,b). Interspike
intervals between adjacent spikes (also called first-order intervals) within a stimulus trial
are used to construct per-trial estimates of the ISI histogram, which are then averaged
across trials to form the final first-order ISI histogram (Fig ST1-C). An alternative to
the first-order ISI histogram, called the all-order ISI histogram (or the autocorrelogram),
can be estimated in a similar way with the only difference being the inclusion of
intervals between all spikes within a trial (not only adjacent spikes) to construct the
histogram (Fig ST1-E) (Rodieck, 1967; Møller, 1970). The autocorrelogram has been
used to study the temporal representation of stationary as well as nonstationary
stimuli (Bourk, 1976; Sinex and Geisler, 1981; Cariani and Delgutte, 1996a,b). While
the autocorrelogram is attractive for its simplicity, it is confounded by refractory effects
(Fig ST1-E and ST1-F). In particular, since successive spikes within a single trial cannot
occur within the refractory period, the autocorrelogram shows an artifactual absence of
intervals for delays less than the 0.6-ms refractory period (Fig ST1-E). As a result, the
autocorrelogram spectrum is partly corrupted.

Joris and colleagues extended these ISI-based analyses to remove the confounds of
the refractory effects by including all-order interspike intervals across stimulus trials to
compute a shuffled correlogram (Louage et al., 2004). A shuffled correlogram computed
using spike trains in response to multiple repetitions of a single stimulus from a single
neuron is called the shuffled autocorrelogram (or the SAC, Fig ST1-G). Similarly, a
shuffled correlogram computed using spike trains from different neurons, or for different
stimuli, is called the shuffled cross-correlogram (or the SCC ). The use of across-trial
all-order ISIs provides substantially more smoothing than simple all-order ISIs because
many more intervals are included in the histogram (compare Fig ST1-E with Fig ST1-G,
and Fig ST1-F with Fig ST1-H).

In addition, both polarities of the stimulus can be used to separate out ENV and
TFS components from the response. Stimuli with alternating polarities share the same
envelope, but their phases (TFS) differ by a half-cycle at all frequencies. By averaging
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Fig ST1. The shuffled autocorrelogram is better than the first-order and all-order ISI histogram, both in
the time and frequency domains. Example correlograms (top) and associated spectra (bottom) constructed using spike
trains recorded from an AN fiber (CF = 1.4 kHz, medium SR) in response to a SAM-tone at Fc = CF (50-Hz modulation
frequency or Fm, 0-dB modulation depth, 700-ms duration, 27 repetitions, 50 dB SPL). (A) Autocorrelation function of the
half-wave rectified stimulus. (B) The discrete Fourier transform (DFT) of A. (C) The first-order (FO) ISI histogram. (D)
DFT of C. The first-order ISI histogram poorly captures the carrier (TFS) and fails to capture the modulator (ENV). (E)
The all-order (AO) ISI histogram. (F) DFT of E. The all-order ISI histogram captures both the carrier and modulator despite
being noisy. Both the first-order (C) and the all-order (E) ISI histograms show dips for intervals less than the refractory
period (∼0.6 ms), with the corresponding spectra corrupted by these refractory effects. (G) The shuffled autocorrelogram.
(H) DFT of G. The shuffled autocorrelogram is smoother compared to the other correlograms, which also leads to improved
SNR in the spectrum at both the carrier and modulator frequencies. All these ISI histograms are corrupted by rectifier
distortion at twice the carrier frequency (2Fc). Bin width = 50 µs for histograms in C, E, and G.

shuffled autocorrelograms for both stimulus polarities and shuffled cross-correlograms
for opposite stimulus polarities, the polarity-tolerant (ENV) correlogram (called the
sumcor) is obtained (Louage et al., 2004) (S4 Appendix). Similarly, the
polarity-sensitive (TFS) correlogram, the difcor, is estimated as the difference between
the average autocorrelogram for both stimulus polarities and the cross-correlogram for
opposite stimulus polarities (S4 Appendix). These functions have been preferred over
PSTH-based analyses for estimating correlation sequences and response spectra (Joris
et al., 2006; Cedolin and Delgutte, 2005; Rallapalli and Heinz, 2016). Shuffled
autocorrelograms have also been used to derive temporal metrics, such as the
correlogram peak-height and half-width, to quantify the strength and precision of
temporal coding in the response, respectively(Louage et al., 2004), including for
nonstationary stimuli (Sayles and Winter, 2008; Sayles et al., 2015; Paraouty et al.,
2018). In addition, cross-correlograms have been used to develop metrics to quantify
ENV/TFS similarity between responses to different stimuli recorded from the same
neuron (e.g., speech stimuli (Heinz and Swaminathan, 2009; Swaminathan and Heinz,
2012; Rallapalli and Heinz, 2016)), or between responses from different neurons (Joris
et al., 2006; Heinz et al., 2010; Swaminathan and Heinz, 2011).

Although correlogram-based analyses provide a rich set of temporal metrics, they



suffer from three major limitations. First, correlograms discard phase information in the
response. Response phase can convey important information, especially for complex
stimuli, like speech (Delgutte et al., 1998; Greenberg and Arai, 2001; Paliwal and
Alsteris, 2003). Second, metrics derived from the shuffled autocorrelogram and the
sumcor are corrupted by rectifier distortions (e.g., Fig ST1-H). Third, spectral estimates
based on correlograms are appropriate for second-order stationary signals. To
accommodate for nonstationary signals, usually a sliding-window-based approach is
employed where in each temporal window the spectrum and/or correlogram is
computed (Sayles and Winter, 2008). This windowing-based approach faces the classic
problem of a time-frequency resolution trade-off. In addition, the smoothing benefit
provided by the correlogram comes at large computational cost as its computation
requires all-order spike-time differences across all trials. This computation cost scales
quadratically (N2) with the number of spikes (N) and can be cumbersome for large N .
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