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Multiplexing asymmetric signals

To investigate the robustness of our results with respect to asymmetric signals we study
the effect of different strengths for the intensity parameters of the different features D1

and D2. For simplicity, we further assume that the intensity parameters, D1 and D2, do
not fluctuate but remain constant in time, and that γη = Aη/Dη ≡ γ is independent of
η.

In this case, the cross-correlation between the jth neuron in population 1 and the
downstream neuron can be written as

Γ(1,j), post(∆t) =
D1

N
δ(∆t− d)w1,j +D2

1w̄1 +
γ2D2

1

2
w̃1 cos[ν1(∆t− d)

+ φ1,j − ψ1] +D1D2w̄2,

(1)

The STDP dynamics in the continuum limit is given by

ẇ1(φ, t)

λ
=F1,d(φ, t) + w̄1(t)F1,0(φ, t)+

w̃1(t)F1,1(φ, t) + w̄2(t)F1,0(φ, t)
D2

D1
,

(2)

where,

F1,d(φ, t) =w1(φ, t)
D1

N

(
f+(w1(φ, t))K+(d)−

f−(w1(φ, t))K−(d)

)
,

(3a)

F1,0(φ, t) =D2
1

(
K̄+f+(w1(φ, t))− K̄−f−(w1(φ, t))

)
, (3b)

F1,1(φ, t) =
A2

1

2

(
K̃+f+(w1(φ, t)) cos[φ− Ω1

+−

ν1d− ψ1]− K̃−f−(w1(φ, t)) cos[φ− Ω1
−

− ν1d− ψ1]

)
.

(3c)
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The homogeneous fixed point obeys

f−(w∗)

f+(w∗)
=

1 + Z+

1 + Z−
≡ αc, (4)

where

Z± ≡
1

(D1 +D2)N
K±(d). (5)

Performing standard stability analysis yields

δẇ1,j =− ĝ0,1δw1,j −∆f(w∗)(δw̄1 +
D2

D1
δw̄2) +

A2
1

2D1
2

(
f+(w∗)K̃+(ν1) cos[φ1,j

− Ω1
+ − ν1d− ψ1]− f−(w∗)K̃−(ν1) cos[φ1,j − Ω1

− − ν1d− ψ1]
)
δw̃1.

(6)

with

ĝ0,1 = (
D1 +D2

D1
)

(
αµ(1 + Z−)

w∗µ

1− w∗

)
+
K+(d)

D1N
f+(w∗)− K−(d)

D1N
f−(w∗)

= (
D1 +D2

D1
)
(
g0,1 −∆f(w∗)

)
,

(7)

where

g0 ≡ αµ(1 + Z−)
w∗µ

1− w∗
. (8)

As in the case of multiplexing symmetric signals, the stability matrix has four
prominent eigenvalues: two are the rhythmic modes and two are in the subspace of
uniform fluctuations. As in the symmetric case, the uniform modes of fluctuations,
δw̄> = (δw̄1, δw̄2), span an invariant subspace of the stability matrix, and we can
study the restricted stability matrix, M̄ .

For D1 6= D2 the restricted stability matrix, M̄ , is not symmetric, and its
eigenvalues are given by

λ̄1 = − 1

2D2

(
(D1 +D2)2

D1
g0 −

D2
1 +D2

2

D1
∆f(w∗)

)
− 1

2D2

√
∆ (9a)

λ2 = − 1

2D2

(
(D1 +D2)2

D1
g0 −

D2
1 +D2

2

D1
∆f(w∗)

)
+

1

2D2

√
∆. (9b)

where
∆ = ĝ0,1(D2 −D1)2 + 4∆f(w∗)2D2

2. (10)

The corresponding eigenvetors are

v>1 =

(
1

2∆f(w∗)D1

(
ĝ0(D2 −D1) +

√
∆
)
, 1

)
(11a)

v>2 =

(
1

2∆f(w∗)D1

(
ĝ0(D2 −D1)−

√
∆
)
, 1

)
(11b)

The first eigenvalue, λ̄1, is always negative and exhibits similar behaviour as the
uniform eigenvalue, λ̄u. The second eigenvalue, λ2, can change its sign and become
unstable. Moreover, in the limit of (D1 −D2)→ 0: λ̄1 → λ̄u, v>1 → v>u = (1, 1), and
λ̄2 → λ̄WTA, v>2 → v>WTA = (1,−1). Thus, λ2 represents the competitive eigenvalue.
Instability of λ2 can generate a winner-take-all competition that will prevent
multiplexing. Nevertheless, λ2 is continuous in (D1 −D2); thus, one expects a range of
parameters in which λ2 will be stable.
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The rhythmic eigenvalues of the stability matrix are given by

λ̃νη = −ĝ0,1(δ1η +
D1

D2
δ2η) +

γ2

2
f+(w∗)Q̃ (12)

Q̃ = K̃+(νη) cos[Ωη+ + νηd]− αcK̃−(νη) cos[Ωη− + νηd], (η = 1, 2). (13)

Thus, the rhythmic eigenvalue behaves in a qualitatively similar manner to the
symmetric case. Fig S2 presents simulation results in the case where D1 = 3D2. As can
be seen, despite the asymmetry between the two signals, both are transmitted
downstream.
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