Supplementary Information: Multiplexing asymmetric signals

Nimrod Sherf ${ }^{1,2^{*}}$, Maoz Shamir ${ }^{1,2,3}$
1 Physics Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
2 Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
3 Department of Physiology and Cell Biology Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel

* sherfnim@post.bgu.ac.il

Multiplexing asymmetric signals

To investigate the robustness of our results with respect to asymmetric signals we study the effect of different strengths for the intensity parameters of the different features D_{1} and D_{2}. For simplicity, we further assume that the intensity parameters, D_{1} and D_{2}, do not fluctuate but remain constant in time, and that $\gamma_{\eta}=A_{\eta} / D_{\eta} \equiv \gamma$ is independent of η.

In this case, the cross-correlation between the j th neuron in population 1 and the downstream neuron can be written as

$$
\begin{align*}
\Gamma_{(1, j), \text { post }}(\Delta t) & =\frac{D_{1}}{N} \delta(\Delta t-d) w_{1, j}+D_{1}^{2} \bar{w}_{1}+\frac{\gamma^{2} D_{1}^{2}}{2} \tilde{w}_{1} \cos \left[\nu_{1}(\Delta t-d)\right. \tag{1}\\
& \left.+\phi_{1, j}-\psi_{1}\right]+D_{1} D_{2} \bar{w}_{2}
\end{align*}
$$

The STDP dynamics in the continuum limit is given by

$$
\begin{align*}
\frac{\dot{w}_{1}(\phi, t)}{\lambda}= & F_{1, d}(\phi, t)+\bar{w}_{1}(t) F_{1,0}(\phi, t)+ \\
& \tilde{w}_{1}(t) F_{1,1}(\phi, t)+\bar{w}_{2}(t) F_{1,0}(\phi, t) \frac{D_{2}}{D_{1}} \tag{2}
\end{align*}
$$

where,

$$
\begin{align*}
F_{1, d}(\phi, t)= & w_{1}(\phi, t) \frac{D_{1}}{N}\left(f_{+}\left(w_{1}(\phi, t)\right) K_{+}(d)-\right. \\
& \left.f_{-}\left(w_{1}(\phi, t)\right) K_{-}(d)\right) \tag{3a}\\
F_{1,0}(\phi, t)= & D_{1}^{2}\left(\bar{K}_{+} f_{+}\left(w_{1}(\phi, t)\right)-\bar{K}_{-} f_{-}\left(w_{1}(\phi, t)\right)\right), \tag{3b}\\
F_{1,1}(\phi, t)= & \frac{A_{1}^{2}}{2}\left(\tilde { K } _ { + } f _ { + } (w _ { 1 } (\phi , t)) \operatorname { c o s } \left[\phi-\Omega_{+}^{1}-\right.\right. \\
& \left.\nu_{1} d-\psi_{1}\right]-\tilde{K}_{-} f_{-}\left(w_{1}(\phi, t)\right) \cos \left[\phi-\Omega_{-}^{1}\right. \tag{3c}\\
& \left.\left.-\nu_{1} d-\psi_{1}\right]\right)
\end{align*}
$$

The homogeneous fixed point obeys

$$
\begin{equation*}
\frac{f_{-}\left(w^{*}\right)}{f_{+}\left(w^{*}\right)}=\frac{1+Z_{+}}{1+Z_{-}} \equiv \alpha_{c} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
Z_{ \pm} \equiv \frac{1}{\left(D_{1}+D_{2}\right) N} K_{ \pm}(d) \tag{5}
\end{equation*}
$$

Performing standard stability analysis yields

$$
\begin{align*}
\delta \dot{w}_{1, j}= & -\hat{g}_{0,1} \delta w_{1, j}-\Delta f\left(w^{*}\right)\left(\delta \bar{w}_{1}+\frac{D_{2}}{D_{1}} \delta \bar{w}_{2}\right)+\frac{A_{1}^{2}}{2 D_{1}^{2}}\left(f _ { + } (w ^ { * }) \tilde { K } _ { + } (\nu _ { 1 }) \operatorname { c o s } \left[\phi_{1, j}\right.\right. \tag{6}\\
& \left.\left.-\Omega_{+}^{1}-\nu_{1} d-\psi_{1}\right]-f_{-}\left(w^{*}\right) \tilde{K}_{-}\left(\nu_{1}\right) \cos \left[\phi_{1, j}-\Omega_{-}^{1}-\nu_{1} d-\psi_{1}\right]\right) \delta \tilde{w}_{1} .
\end{align*}
$$

with

$$
\begin{align*}
\hat{g}_{0,1} & =\left(\frac{D_{1}+D_{2}}{D_{1}}\right)\left(\alpha \mu\left(1+Z_{-}\right) \frac{w^{* \mu}}{1-w^{*}}\right)+\frac{K_{+}(d)}{D_{1} N} f_{+}\left(w^{*}\right)-\frac{K_{-}(d)}{D_{1} N} f_{-}\left(w^{*}\right) \\
& =\left(\frac{D_{1}+D_{2}}{D_{1}}\right)\left(g_{0,1}-\Delta f\left(w^{*}\right)\right) \tag{7}
\end{align*}
$$

where

$$
\begin{equation*}
g_{0} \equiv \alpha \mu\left(1+Z_{-}\right) \frac{w^{* \mu}}{1-w^{*}} \tag{8}
\end{equation*}
$$

As in the case of multiplexing symmetric signals, the stability matrix has four prominent eigenvalues: two are the rhythmic modes and two are in the subspace of uniform fluctuations. As in the symmetric case, the uniform modes of fluctuations, $\delta \overline{\boldsymbol{w}}^{\top}=\left(\delta \bar{w}_{1}, \delta \bar{w}_{2}\right)$, span an invariant subspace of the stability matrix, and we can study the restricted stability matrix, $\overline{\boldsymbol{M}}$.

For $D_{1} \neq D_{2}$ the restricted stability matrix, $\overline{\boldsymbol{M}}$, is not symmetric, and its eigenvalues are given by

$$
\begin{align*}
& \bar{\lambda}_{1}=-\frac{1}{2 D_{2}}\left(\frac{\left(D_{1}+D_{2}\right)^{2}}{D_{1}} g_{0}-\frac{D_{1}^{2}+D_{2}^{2}}{D_{1}} \Delta f\left(w^{*}\right)\right)-\frac{1}{2 D_{2}} \sqrt{\Delta} \tag{9a}\\
& \lambda_{2}=-\frac{1}{2 D_{2}}\left(\frac{\left(D_{1}+D_{2}\right)^{2}}{D_{1}} g_{0}-\frac{D_{1}^{2}+D_{2}^{2}}{D_{1}} \Delta f\left(w^{*}\right)\right)+\frac{1}{2 D_{2}} \sqrt{\Delta} \tag{9b}
\end{align*}
$$

where

$$
\begin{equation*}
\Delta=\hat{g}_{0,1}\left(D_{2}-D_{1}\right)^{2}+4 \Delta f\left(w^{*}\right)^{2} D_{2}^{2} \tag{10}
\end{equation*}
$$

The corresponding eigenvetors are

$$
\begin{align*}
& \boldsymbol{v}_{1}^{\top}=\left(\frac{1}{2 \Delta f\left(w^{*}\right) D_{1}}\left(\hat{g}_{0}\left(D_{2}-D_{1}\right)+\sqrt{\Delta}\right), 1\right) \tag{11a}\\
& \boldsymbol{v}_{2}^{\top}=\left(\frac{1}{2 \Delta f\left(w^{*}\right) D_{1}}\left(\hat{g}_{0}\left(D_{2}-D_{1}\right)-\sqrt{\Delta}\right), 1\right) \tag{11b}
\end{align*}
$$

The first eigenvalue, $\bar{\lambda}_{1}$, is always negative and exhibits similar behaviour as the uniform eigenvalue, $\bar{\lambda}_{u}$. The second eigenvalue, λ_{2}, can change its sign and become unstable. Moreover, in the limit of $\left(D_{1}-D_{2}\right) \rightarrow 0: \bar{\lambda}_{1} \rightarrow \bar{\lambda}_{u}, \boldsymbol{v}_{1}^{\top} \rightarrow \boldsymbol{v}_{u}^{\top}=(1,1)$, and $\bar{\lambda}_{2} \rightarrow \bar{\lambda}_{\mathrm{WTA}}, \boldsymbol{v}_{2}^{\top} \rightarrow \boldsymbol{v}_{\mathrm{WTA}}^{\top}=(1,-1)$. Thus, λ_{2} represents the competitive eigenvalue. Instability of λ_{2} can generate a winner-take-all competition that will prevent multiplexing. Nevertheless, λ_{2} is continuous in $\left(D_{1}-D_{2}\right)$; thus, one expects a range of parameters in which λ_{2} will be stable.

The rhythmic eigenvalues of the stability matrix are given by

$$
\begin{align*}
& \tilde{\lambda}_{\nu_{\eta}}=-\hat{g}_{0,1}\left(\delta_{1 \eta}+\frac{D_{1}}{D_{2}} \delta_{2 \eta}\right)+\frac{\gamma^{2}}{2} f_{+}\left(w^{*}\right) \tilde{Q} \tag{12}\\
& \tilde{Q}=\tilde{K}_{+}\left(\nu_{\eta}\right) \cos \left[\Omega_{+}^{\eta}+\nu_{\eta} d\right]-\alpha_{c} \tilde{K}_{-}\left(\nu_{\eta}\right) \cos \left[\Omega_{-}^{\eta}+\nu_{\eta} d\right],(\eta=1,2) . \tag{13}
\end{align*}
$$

Thus, the rhythmic eigenvalue behaves in a qualitatively similar manner to the symmetric case. Fig S2 presents simulation results in the case where $D_{1}=3 D_{2}$. As can be seen, despite the asymmetry between the two signals, both are transmitted downstream.

