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S1 Text

Epidemic renewal models

Consider an incidence curve over times 1 ≤ s ≤ t for an epidemic with effec-
tive reproduction number and total infectiousness at t of Rt and Λt. While Rt
describes the branching of the epidemic (the number of secondary cases orig-

inating from a primary one), Λt :=
∑t−1
s=1 It−sws, controls how past infected

cases propagate new infections, via the generation time distribution, which is
defined by ws. Here ws is the probability that a primary case takes between
s− 1 and s days to generate a secondary case [1]. This distribution is intrinsic

to a disease and
∑b
s=1 ws = 1 for some memory time b.

We make the common assumptions that the generation time distribution is
known and does not change with time [2]. The quantities Rt and Λt completely
describe the transmissibility of an epidemic – an idea formalised by the renewal
model [1]. The renewal model discretises the fundamental Euler-Lotka repro-
duction equation from ecology and evolution and states that It ∼ Poiss(RtΛt)
[3]. This relationship is applicable to any population biology problem where
observed sample counts are used to estimate underlying growth rates.

Generally Rt is unknown and must be inferred from (It1, Λt1). Its log-

likelihood under the standard renewal model, l
(1)
t = logP(It, Λt | Rt) is [4]

l
(1)
t = It logRt −RtΛt + ζt, (S1)

with ζt = − log It! + It log Λt collecting terms that do not depend on parameter

Rt. The superscript of l
(1)
t highlights that this model employs a unit window

length, and hence only uses (It, Λt) to infer Rt. While this construction max-
imises model flexibility, Rt estimates can be noisy and over-fitting is likely [5].

Grouping is therefore employed. This assumes that the reproduction num-
ber, denoted Rτ(t), is constant over the past k time units and leads to a
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piecewise-constant function that classifies between meaningful and negligible

reproduction number changes [2]. The grouped log-likelihood function, l
(k)
t =

logP(Itt−k+1, Λtt−k+1 | Rτ(t)), with parameter-independent term ζτ(t) =
∑
s∈τ(t)

− log Is! + Is log Λs can be composed as

l
(k)
t = iτ(t) logRτ(t) −Rτ(t)λτ(t) + ζτ(t), (S2)

with grouped sums iτ(t) :=
∑
s∈τ(t) Is and λτ(t) :=

∑
s∈τ(t) Λs. At k = 1 we

recover Eq. (S1) from Eq. (S2).
The maximum likelihood estimates (MLEs) and Fisher information (FI) of

Eq. (S2) provide insight into the benefits of k-grouping. The MLE facilitates
unbiased inference, while the FI bounds the uncertainty around the MLE (it
measures the inverse of estimate variance) [6]. The MLE, R̃τ(t), is the solution

to ∂l
(k)
t /∂Rτ(t) = 0, while the FI is E[− ∂2l

(k)
t /∂R2

τ(t)] [6]. We actually compute
the FI for the square root of Rτ(t), I(2

√
Rτ(t)), as it is known to have optimal

properties [7]. The MLE and FI can then be derived as [5]

R̃τ = iτ(t)λ
−1
τ(t) and I(2

√
Rτ(t)) = λτ(t). (S3)

Comparing Eq. (S3) to equivalent expressions at k = 1 reveals the impact
of grouping. We find that R̃τ(t) =

∑
s∈τ(t) (Λs/λτ(t)) R̃s and I(2

√
Rτ(t)) =∑

s∈τ(t) I(2
√
Rs). The grouped MLE is hence a weighted moving average of the

ungrouped MLEs, explaining why noise is reduced. The grouped FI is a linear
summation of ungrouped FIs, implying that estimate precision also increases
with grouping. Unfortunately, these advantages come at the expense of elevated
tracking bias. At the extreme of k = t, for example, R̃τ(t) is a stable t-point
average that can only be gradually perturbed by new incidence data. Thus, we
trade the sensitivity to rapid Rs changes for smaller estimate variances. The
need to formally mediate this trade led us to adapt the APE metric.

Prospective model selection

In [7] an approximate minimum description length (MDL) solution was pro-
posed for retrospectively selecting a different but related k defining the non-
overlapping window size optimising historical reproduction number estimates.
This method, by exploiting an often neglected aspect of model complexity,
known as parametric complexity [8], was shown to outperform standard mea-
sures such as Akaike (AIC) and Bayesian information criteria (BIC). While this
method is not applicable here, as prospective performance requires different op-
timisations [9], we heed the lesson about accounting for parametric complexity.

The criterion we propose is the APE [10], which also approximates the MDL,
but with an emphasis on prediction. The APE values models on their ability to
generalise i.e. predict unseen data from the generating process [11]. Practically,
this is implemented by sequentially predicting the data observed at time s + 1
(i.e. one-step-ahead of s) using the subset of data preceding it [9]. This means
that we causally predict Is+1 at every s given a k-window back in time of
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τ(s) = {s, s − 1, . . . , s − k + 1}. This window is truncated if s < k so that
min τ(s) ≥ 1. We then evaluate our prediction (e.g. the posterior mean Îs+1)
against the observed Is+1.

The k minimising the cumulative one-step-ahead prediction error up to the
present t, which we term k∗, gives the renewal model that best predicts the
unseen datum at t + 1. We generally do not use Îs+1 directly, but instead
obtain its full predictive distribution P(x | Iss−k+1), with x as some value of the
predicted incidence at time s+ 1. The APE is defined as a cumulative log-score

APEk =

t−1∑
s=1

− logP
(
Is+1 | Iss−k+1

)
. (S4)

The optimal window, k∗ := arg mink APEk, is easy to compute provided the
predictive distribution in Eq. (S4) is calculable. Fig 1 of the main text illustrates
the APE approach. Eq. (S4) is general and applies to any statistical model for
which one-step-ahead predictions can be obtained with Is representing some
type of data from which a time-varying parameter Rs is to be inferred.

By using the complete posterior predictive distribution the APE appropri-
ately accounts for predictive uncertainty and is specialised to the problem of in-
terest. A point-estimate alternative to APE, known as predictive mean squared
error (PMSE), can be used when this distribution is not available [10] and is

defined as PMSEk = 1/t−1
∑t−1
s=1(Is+1 − Îs+1)2. While the PMSE might not be

as tailored to the problem of interest, it can be easier to compute and both met-
rics converge when errors are normally distributed [11]. Other score functions
can also be used when application-specific insights are available [12].

The APE metric has formal links to Bayesian model selection (BMS). BMS
also includes parametric complexity and is asymptotically equivalent to the
MDL when Jeffreys prior is used within the BMS [8, 13]. Interestingly, because

any joint distribution can be decomposed as− logP (It1) =
∑t−1
s=1− logP (Is+1 | Is1)

=
∑t−1
s=1− logP

(
Is+1 | Iss−k+1

)
, APE, under certain regularity conditions, is

equivalent to both BMS and other MDL approximations (such as the one in
[5]). For more details see [14] and [8]. The latter equality is from the finite
memory of the renewal model, which depicts the non-stationary nature of epi-
demics. We assume − logP(I1) = 0 in this decomposition as an initial condition.

However, the APE is simpler and more transparent, requiring no difficult
integral evaluations [5]. Consequently, the APE not only accounts for parametric
complexity (implicitly), but also applies to models of arbitrary complexity [11].
The drawbacks of APE are that it requires the data to be ordered in time, and
being data-driven, its computational complexity increases linearly in both the
number of models to be assessed and the size of t [15]. Overall, APE provides
a simple and optimal solution to window selection, which surprisingly has not
penetrated the epidemiological or ecological literature.
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