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1 Mutagenesis experiment: mathematical derivations

Here we present derivations of various results discussed in the main text, for the dilution and
accumulation mechanisms. The polyploidy mechanism is not discussed here as all results are
presented in the main text.

1.1 Dilution of antibiotic-sensitive molecules

In this subsection all cells are assumed monoploid (c = 1). Suppose we start from a single geno-
typically resistant cell containing n sensitive molecules. We follow a single lineage, as in Fig 1a,
and consider the cell in that lineage after g generations. Let the number of sensitive molecules in
that cell be zn(g). A cell is to be considered phenotypically resistant if zn(g) = 0. During cell
division, each of the n sensitive molecules may be lost (from the lineage we track) with probability
1/2. Therefore, the probability that any of the original sensitive molecules present in the initial cell
remains in our chosen cell is 2−g. Hence, zn(g) is a binomially distributed random variable with n
trials and probability parameter 2−g. The probability of phenotypic resistance in generation g is
therefore

(1− 2−g)n ≈ e−n2
−g

. (S1)

The exponential approximation in Eq (S1) holds when n is large and 2g ∝ n. Resistance thus
emerges when n ≈ 2g or for g ≈ log2(n), in agreement with the simple argument presented in the
main text.

We now turn to the probability of resistance occurring in the whole population (for which at
least one cell must be resistant), for a population that is initiated with a single mutant cell with n
sensitive molecules. Let pn(g) be the probability that no cell exists with zero sensitive molecules
after g generations. Considering the distribution of molecules after the �rst division we have

pn(g) =

n∑
i=0

(
n

i

)
2−npi(g − 1)pn−i(g − 1). (S2)

This recursion allows us to calculate the probability of no resistance after g generations. If we
start from x mutant cells rather than just a single mutant, the probability of no resistance after g
generations is (pn(g))

x
because mutant lineages are assumed to evolve independently of each other.
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To obtain an approximate time for resistance to emerge, we consider the mean number of
phenotypically resistant cells. Starting from x cells, after g generations the number of resistant
cells can be written as

x2g∑
i=1

ηi, (S3)

where ηi is a random variable equal to 1 if the ith cell has zero sensitive molecules, and 0 otherwise.
The random variables (ηi)

x2g

i=1 are dependent but have identical marginal distributions. Taking
expectations and using E[ηi] = (1 − 2−g)n, we obtain the expected number of phenotypically
resistant cells:

E

[
x2g∑
i=1

ηi

]
= x2g(1− 2−g)n ≈ x2ge−n2

−g

. (S4)

Let τ denote the expected time to resistance in the population. From Eq (S2) the expected time
until a resistant cell emerges can be expressed exactly as

E[τ ] =
∑
k≥0

(pn(k))
x
, (S5)

where pn(k) can be computed recursively from Eq (S2). In order to obtain an intuitively meaningful
result, we reason that phenotypic delay corresponds to the time period during which the expected
number of phenotypic mutants is less than 1. Thus a rough approximation for the expected value
of τ is equal to one plus the number of the last generation in which the expected number of
resistant cells is less than 1. We use the approximation of Eq (S4) and thus we wish to �nd

max{g : x2g exp(−n2−g) < 1}. It can be veri�ed by direct substitution that g = W (nx)−log(x)
log(2) is

the solution, where W is Lambert's function. Approximating W (z) ≈ log z − log log z for z →∞,
we obtain that

E[τ ] ≈ 1 +
log n− log log xn

log(2)
= 1 + log2(n/ log(nx)). (S6)

Equation (S6) agrees very well with computer simulations (Fig 2).

1.2 Accumulation of resistance-enhancing proteins

We consider the scenario that prior to cell division each genotypically resistant cells createMp resis-
tance enhancing molecules. These are binomially distributed between the daughter cells at division.
A cell is assumed to be phenotypically resistant once it has acquired Mr sensitive molecules.

When tracking a single cell (or random lineage), let rg be the number of resistant molecules
the cell possesses at generation g. From the model speci�cation we have the stochastic recursion

rg
d
=Bin(Mp, 0.5) + Bin(rg−1, 0.5), (S7)

where
d
= denotes equality in distribution and we have abused notation using Bin(n, p) to denote in-

dependent binomial random variables with n trials with success probability p. Taking expectations
over Eq (S7), and solving the resulting recursion, leads to E[rg] =Mp(1−2−g). In fact the full distri-
bution of rg can be obtained by observing that it is distributionally equal to

∑g−1
i=0 Bin(Mp, 2

−g+i),
corresponding to the molecular contributions to our chosen cell from each of the previous genera-
tions. This sum has a Poisson-binomial distribution, however the cumulative distribution function
(of interest as we care about Pr(rg ≥ Mr)) is relatively uninformative and numerically unstable.
Therefore we simply note that the number of molecules after many generations is Mp on average,
with �uctuations around this value. The variance Var(rg) = Mp(2/3 − 2−g + 4−g/3) tends to
2Mp/3 in the limit g →∞, hence �uctuations become less important for large Mp (the coe�cient
of variation tends to zero).

As a �rst approximation, since our condition for resistance is that E[rg] ≥Mr, then resistance
will occur at τ ≈ − log2(1− 1/m) as long as m = Mp/Mr > 1. Note that if m < 1, rg may stray
above Mr due to �uctuations, but this cannot produce sustained resistance as such high rg values
will be transient. We therefore do not consider the case of m < 1 in detail. We also omit the
special case m = 1 for lack of biological realism.
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Turning to the population as whole, but still starting with a single cell, we �rstly note that, as
with Eq (S2), the following recursion holds for the probability of no resistance after g generations
starting with n resistance molecules:

pn(g) =

Mp+n∑
k=0

(
n+Mp

k

)
2−n−Mppk(g − 1)pn+Mp−k(g − 1). (S8)

Initial conditions for the recursion are pn(0) = 1 for n < Mr, and 0 otherwise. Again, for x > 1,
the probability of no resistance is (pn(g))

x
.

In summary, for m < 1 resistance will not be stably achieved (steady state less thanMr), while
if we seek a delay of at least a generation (τ ≥ 1) we require m ≤ 2. A noticeable phenotypic
delay occurs thus only in the narrow parameter range 1 ≤ m ≤ 2. As mentioned in the main text,
resistance will occur faster in the whole population than down any lineage, further narrowing the
parameter regime in that setting.

1.3 Combining the dilution and polyploidy mechanism: phenotypic pen-

etrance

We now consider bacteria with ploidy c. Starting from a cell possessing a mutated allele on a
single chromosome, gc = log2(c) divisions are required to generate a cell with all c copies having
the resistant allele (henceforth termed chromosomal resistant). To include the dilution mechanism,
suppose n sensitive molecules exist in the initial cell and that each wild-type chromosome produces
n/c sensitive molecules between cell divisions.

A descendant of the initial mutated cell that emerges with a full suite of resistant chromosomes
will eventually have phenotypically resistant cells amongst their progeny (after dilution of any
sensitive molecules). This cell will initially have nc sensitive molecules. Binomial partitioning of
the n original sensitive molecules and those created between the appearance of the �rst mutant
chromosome and the genotypically resistant cell then allows us to write

nc
d
=Bin(n, 2−gc) +

gc−1∑
i=0

Bin
(
(1− 2i/c)n, 2−(gc−i)

)
(S9)

where Bin(. . . ) denotes, as before, independent binomial random numbers. Note that here we
restrict ourselves to n such that (1− 2i/c)n is an integer, for each 0 ≤ i ≤ gc − 1. This is satis�ed
if each sensitive chromosome produces an integer number of sensitive molecules (n/c).

Any phenotypically resistant cells will be descendants of the initial genotypically resistant cell.
The question of whether there is any such resistant cell by generation g is therefore equivalent to
asking whether there is any resistant cell by generation g − gc but initiating the process with the
initial genotypically resistant bacteria with nc sensitive molecules. To �nd the expected number
of phenotypically resistant cells, we average over (S4) with respect to the distribution of nc, that
is we compute

E[2g−gc(1− 2−(g−gc))nc ] = 2g−gcE[(1− 2−(g−gc))Bin(n,2−gc )+
∑gc−1

i=0 Bin((1−2i/c)n,2−(gc−i))] (S10)

= 2g−gc(1− 2−g)n
gc−1∏
i=0

(1− 2−(g−i))n(1−2i/c). (S11)

Here, the generating function for the binomial distribution has been used. If, as before, we de�ne
genotypically resistant cells as having at least one resistant chromosome, then for any g ≤ gc only
a single genotypically resistant bacterium will exist because we have assumed co-inheritance of re-
cently linked chromosomes. After generation gc all genotypically resistant cells are the descendants
of the initial genotypically resistant cell, and their number is 2g−gc . Hence, of the genotypically
resistant cells, the expected fraction of phenotypically resistant cells is given by{

0 0 ≤ g < gc,

(1− 2−g)n
∏gc−1
i=0 (1− 2−(g−i))n(1−2i/c) gc ≤ g.

(S12)

which gives Eq (1) from the main text. Following [1] we call this quantity the phenotypic pene-
trance. The limiting case of n = 0 gives a Heaviside step function θ(g− gc) as expected. Note that
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while this equation was derived by considering the scenario where we start with a single mutated
cell, it holds also when there are initially many mutated cells (x > 1). This is because phenotypic
penetrance is the ratio of phenotypically resistant cells to genotypically resistant cells.

2 Single-cell simulations

One of the key arguments used by Sun et al. [1] to a�rm that phenotypic delay is caused mostly
by the e�ective polyploidy mechanism was the asymmetric inheritance of resistance, i.e., the obser-
vation that some lineages become resistant while others do not. This e�ect can only be observed
by studying the behaviour of individual cells. Hence, to understand the e�ect of the di�erent phe-
notypic delay mechanisms, we simulate a single cell immediately after a mutation (Fig 1a). When
the cell divides, we follow one randomly selected daughter and continue tracking that cell until
phenotypic resistance emerges or the cell loses all resistant alleles. We repeat the simulation 10000
times and calculate the probability of the cell becoming phenotypically resistant as a function of
the number of generations from the mutation.

In the case of the dilution mechanism, the phenotypic delay is controlled by the number of
molecules n that need to be diluted out (Fig 1b). More molecules lead to a longer delay be-
cause more generations must pass before random segregation produces a cell without any sensitive
molecules. In contrast to the e�ective polyploidy model, the probability of phenotypic resistance
always approaches 1 for long times, and the approach to this end point is also more gradual. This
is because, unlike in the polyploidy model, molecules segregate independently of each other, and
the probability of producing a cell with only resistant molecules is non zero (albeit very small)
already after the �rst division. Since genetic resistance cannot be lost in this model (there is no
chromosomal segregation), all cells eventually become resistant. Analytically, we showed (Eq S1)
that the probability of resistance is equal to :

Pres(g) = (1− 2−g)n, (S13)

where g is the number of generations from the mutation.
In the case of the e�ective polyploidy mechanism, the probability of resistance is exactly zero

until generation 1 + log2 c, after which it assumes a constant value 1/c (Fig 1c), where c is the
e�ective polyploidy. This is because if only one of the c = 1, 2, 4, . . . chromosomes has the resistant
allele, exactly one cell out of c progeny of the initial cells ends up with resistant chromosomes, and
the rest c− 1 cells have only sensitive chromosomes. Therefore,

Pres(g) =

{
0 if g < 1 + log2 c

1/c if g ≥ 1 + log2 c.
(S14)

In Fig 1c, we observe close agreement between the theory and our stochastic simulations.
The third mechanism that could lead to a phenotypic delay is the accumulation of resistance-

enhancing molecules (Fig 1d). As explained in the main text and in Section 1.2, a substantial
phenotypic delay is only observed within a narrow parameter range for this mechanism: 1 . m . 2.

3 Biasing the partitioning of molecules at divisions shortens

phenotypic delay

In the main text, for the dilution mechanism we assumed that target molecules are divided between
the two daughters without any bias. While this is a reasonable assumption for cytoplasmic proteins,
there is evidence that membrane-associated proteins are segregated in a biased way: a fraction
p > 1/2 ends in a daughter cell with the older pole [2, 3, 4]. In particular, a bias p = 0.62 has been
shown for e�ux pumps [5], whose expression is associated with elevated resistance to antibiotics.
Another example is OmpA (outer membrane protein A) which also tends to accumulate in cells
with older poles [3]. OmpA is implicated in phage invasion; mutations that decrease or alter the
protein create resistance to bacteriophages [6, 7].

To investigate the e�ect of biased protein segregation on the length of phenotypic delay, we
repeated our single-cell and population level simulations using the dilution mechanism (n = 1000)
with a biased binomial distribution (p = 0.62 instead of p = 0.5 as used in the main text). A very
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small e�ect of the bias is present at the single-cell level (Fig 3a), but a much larger e�ect (delay
shortened by one generation) is observed at the population level (Fig 3b). This can be explained
as follows. At the population level, it is enough for a single cell to become resistant. Biasing causes
cells with the younger pole to be depleted of the sensitive molecules faster and, hence, to become
resistant earlier. On the other hand, at the single-cell level we follow a randomly selected daughter
cell and not necessary the one with the younger pole. This largely nulli�es the e�ect because even
though some cells in the lineage get rid of the sensitive molecules faster than in the case of no bias,
others take longer.

4 Phenotypic delay when the number of target molecules is

independent of the growth rate

In the main text, for the combined dilution and e�ective polyploidy mechanisms we assumed that
the number of sensitive target molecules depends on the growth rate. In particular, we assumed
that the gyrase enzyme constitutes a roughly constant fraction of the proteome, independently
of the growth rate [8]. Assuming that the total protein mass is proportional to cell volume, and
that volume ∝ 2λ/λ0 , where λ is the growth rate and λ0 = 1h−1 [9, 10], we can then predict the
change in the number of gyrase molecules per cell associated with a change in growth rate. For
example, if we assume that n = 20 for td = 60min, then for td = 30min we obtain n = 40 (Fig 4a).
In contrast, in this subsection we investigate what happens if the number of target molecules is
independent of the doubling time. To be speci�c, let us take n = 20 for both td = 60min and
td = 30min (Fig 4b). We observe that when the number of target molecules n does not depend
on td, the increase in phenotypic delay decreases from 2 to 1 generation, similar to the results
obtained for the e�ective polyploidy model without the dilution mechanism. Hence, the increase
in phenotypic delay in the combined model caused by a decrease of the doubling time td is caused
largely by the increase in the number of target molecules.

In the main text, we also show that the probability of surviving an antibiotic treatment in a
simulated infection for the combined model is a function of td (Fig 4c). In Fig 4d we compare this
to the case where the number of sensitive target molecules n does not depend on td. An almost
complete lack of dependence on td is observed in this case, showing that the dependence on the
doubling time seen in Fig 4c is again mostly due to the change in n with doubling time.

5 Phenotypic delay for the dilution mechanism with non-zero

molecular threshold for resistance

In the main text, for the dilution mechanism, we assumed that a cell becomes resistant only when
it loses all n sensitive molecules. However, in reality a cell may be resistant even if a few sensitive
molecules are left. Here we repeat the analysis for the dilution mechanism for which the threshold
in the number of sensitive molecules for which a cell is phenotypically resistant is nr > 0. The
results are summarized in Fig 5. As expected, the phenotypic delay decreases as nr increases,
because the number of molecules required to be diluted out for resistance to emerge decreases.
Interestingly, we also observe that increasing nr leads to a less gradual appearance of resistance at
the single-cell level.

6 Maximum likelihood estimate of the mutation rate

In Fig 6 we show the maximum likelihood estimates for the mutation probability, obtained using
the package �an [11], from 1000 simulations of the �uctuation test from Ref. [12]. Simulations
were performed using the same method as discussed in the main text, Section 4.6. Each of the
1000 simulated experiments contained 40 independent replicates. Replicates were initiated with
N0 = 100 cells and the �nal population size wasNf = 220N0 so that the population of bacteria grew
for 20 generations. A relatively narrow range of estimated mutation probabilities was obtained, as
shown in Fig 6. This strongly suggests that the observed discrepancy between the mutation rates
obtained from sequencing and the �uctuation test is not due to sampling variation but is likely to
have another (biological) cause. We suggest that this may be phenotypic delay.
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7 Sensitivity analysis of the ABC method of model compar-

ison

In the main text we report that the probability that the data of Boe et al. [13] is generated by the
phenotypic delay model with dilution, compared to the model with no delay, is 0.97.

To check how robust this result is, we performed two sensitivity analyses, altering the size of our
simulation bankNsim, and the number of `closest' simulations we compare to, Nthresh (Nthresh = 100
in the main text). Firstly, we query whether enough simulations have been performed. To do so
we sub-sample our bank of simulations. Secondly, we assess how our probability estimate changes
as a function of Nthresh. Note that as Nthresh → Nsim the probability estimate tends to 0.5 as an
equal proportion of simulations comes from either model. The results are presented in Fig 7, which
supports our conclusion that the model with delay via the dilution mechanism is indeed a better
generative model for the data than the model without delay.
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