Supplementary material for "Non-uniform distribution of myosin-mediated forces governs red blood cell membrane curvature through tension modulation"

H. Alimohamadi¹, A.S. Smith², R.B. Nowak², V.M. Fowler^{2,3} and P. Rangamani¹

¹Department of Mechanical and Aerospace Engineering, University of California San Diego, California, United States of America

²Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, Unites States of America

³Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America

Notation	Description	Units
p	Pressure difference across the membrane	pN/nm ²
θ^{lpha}	The surface coordinate ($\alpha \in \{1,2\}$)	- /
W	Local energy per unit area	pN/nm
E	Total surface energy	pN∙nm
E_b	Bending energy	pN∙nm
E_f	Work done by forces	pN∙nm
r	Position vector	
n	Normal unit vector to the membrane surface	unit vector
a_s	Tangent unit vector on the membrane surface	unit vector
ν	Tangent vector to the membrane surface in direction of increasing arclength	unit vector
au	Rightward normal in direction of revolution	unit vector
\mathbf{a}_{ξ}	Basis vectors describing the tangent plane	
λ	Membrane tension	pN/nm
H	Mean curvature of the membrane	1/nm
K	Gaussian curvature of the membrane	$1/\mathrm{nm}^2$
F	Normally applied force per unit area	${ m pN}/{ m \mu m^2}$
$\kappa_{ u}$	Tangential curvature	1/nm
$\kappa_{ au}$	Transverse curvature	1/nm
κ	Bending modulus	$pN \cdot nm$
κ_G	Gaussian modulus	$pN \cdot nm$
s	Arclength	nm
heta	Azimuthal angle	
ψ	Angle between \mathbf{e}_r and \mathbf{a}_s	
R	Radial distance	nm
Z	Elevation from base plane	nm
$\mathbf{e}_r(heta)$	Radial basis vector	unit vector
$\mathbf{e}_{ heta}$	Azimuthal basis vector	unit vector
k	Altitudinal basis vector	unit vector
A	Membrane area	nm^2
s_{max}	Maximum arclength	nm
h _{max}	Maximum height at the rim	
h _{min}	Minimum height at the dimple	
L	The maximum cell diameter	
$\epsilon_{\rm hmax}$	Error in the maximum height	
$\epsilon_{ m hmin}$	Error in the minimum height	
$\epsilon_{ m L}$	Error in the length	
$\epsilon_{\mathrm{total}}$	Total error	
M	Shape equation variable	1/nm

	Table	1:	Notation	used in	the model
--	-------	----	----------	---------	-----------