
PENDA: PErsoNalized Differential Analysis
Performing personalized data analysis with penda

Magali Richard, Clementine Decamps, Florent Chuffart, Daniel Jost
2019-06-06

Introduction

penda (PErsoNalized Differential Analysis) is an open-access R package that detects gene deregulation
in individual samples compared to a set of reference, control samples. This tutorial aims at providing to
non-expert users basic informations and illustrations on how to run the package.

How to cite: Richard et al. (2019) PenDA, a rank-based method for Personalized Differential Analysis:
application to lung cancer, in submission.

Dataset and data filtering

Dataset

The dataset used to illustrated the method corresponds to the transcriptomes of 3000 genes (RNAseq counts,
normalized with DESeq2) for 40 normal, control samples and 40 tumorous samples taken from the TCGA
study of lung adenocarcinoma [PMID:25079552].

data_ctrl is a data matrix containing the normalized counts of each control sample. The rownames of the
matrix correspond to the gene_symbol, the colnames indicate the sample ID.
data_ctrl = penda::penda_data_ctrl
head(data_ctrl[,1:3])
#> patient_55-6984-11 patient_43-6773-11 patient_55-6978-11
#> AADAC 347.2489 428.5498 442.0555
#> AAMP 965.2342 1528.3221 968.0266
#> ABCA1 0.0000 0.0000 0.0000
#> ABL1 1508.1784 1227.1325 1747.2431
#> ABL2 582.6719 645.4063 488.5088
#> ACACA 0.0000 0.0000 0.0000
dim(data_ctrl)
#> [1] 3000 40

1

PMID:25079552

data_case is a data matrix containing the normalized counts of each tumor sample. The rownames of the
matrix correspond to the gene_symbol, the colnames indicate the sample ID.
data_case = penda::penda_data_case
data_case = data_case[rownames(data_ctrl),]
head(data_case[,1:3])
#> patient_69-7764-01 patient_44-3919-01 patient_86-8278-01
#> AADAC 311.2129 374.9473 445.43169
#> AAMP 1466.5906 979.2256 1059.19225
#> ABCA1 0.0000 0.0000 0.00000
#> ABL1 2676.4306 2065.7474 2503.76905
#> ABL2 1167.0482 678.5603 1263.94317
#> ACACA 0.0000 0.0000 12.79693
dim(data_case)
#> [1] 3000 40

Note: this vignette is an example that has been designed for a rapid test of the method. So we limit the
number of genes and the number of samples for this purpose. For an optimal utilization of the method, users
should however upload all their available data (genes, control and case samples).

Method

penda performs a 3-steps analysis:

1. Data filtering and creation of the dataset

2. Relative gene ordering

3. Differential expression testing

Data filtering

threshold_dataset = 0.99
Penda_dataset = penda::make_dataset(data_ctrl, data_case, detectlowvalue = TRUE,

detectNA = TRUE, threshold = threshold_dataset)
#> [1] "0 probes are NA in at least 99 % of the samples."
#> [1] "0 patients have NA for at least 99 % of the probes."
#> [1] "Computing of the low threshold"
#> number of iterations= 182
#> [1] "559 genes have less than 483.918718057525 counts in 99 % of the samples."
data_ctrl = Penda_dataset$data_ctrl
data_case = Penda_dataset$data_case

The function make_dataset contains three steps to prepare the data for the analysis.

• detect_na_value removes rows and columns (ie, genes and samples) of the data matrices that contain
more than threshold % (default value = 0.99) of NA (Not Available) value.

• detect_zero_value removes genes with very low expression in the majority of samples (controls and
cases), ie. genes whose expression is lower than val_min in threshold% of all the samples. By default
it uses the function normalmixEM to estimate the value of val_min using all the log2 -transformed count
data but this parameter can also be tuned manually by the user.

• rank_genes sorts the genes based on the median value of gene expression in controls. This step is
essential for the proper functioning of penda.

2

head(data_ctrl[,1:3])
#> patient_55-6984-11 patient_43-6773-11 patient_55-6978-11
#> GRIA1 0.0000000 0.000000 0.000000
#> POU3F4 0.0000000 1.721083 2.996986
#> KLF10 0.7356968 0.000000 0.000000
#> SPOP 0.7356968 13.768668 4.495480
#> PRMT3 0.0000000 0.000000 0.000000
#> KLF2 0.0000000 0.000000 0.000000
dim(data_ctrl)
#> [1] 2441 40
head(data_case[,1:3])
#> patient_69-7764-01 patient_44-3919-01 patient_86-8278-01
#> GRIA1 0.00000 0.5895398 0.000000
#> POU3F4 0.00000 0.0000000 0.000000
#> KLF10 0.00000 0.5895398 0.000000
#> SPOP 1989.16884 0.0000000 169.805449
#> PRMT3 85.58354 88.4309664 324.845208
#> KLF2 0.00000 38.3200855 7.382846
dim(data_case)
#> [1] 2441 40

Relative gene ordering

threshold_LH = 0.99
s_max = 30
L_H_list = penda::compute_lower_and_higher_lists(data_ctrl, threshold = threshold_LH,

s_max = s_max)
#> [1] "Computing genes with lower and higher expression"
L = L_H_list$L
H = L_H_list$H

The penda method uses the relative gene ordering in normal tissue.

The function compute_lower_and_higher_lists computes two matrices L and H based on the filtered control
dataset (data_ctrl).

Each row of the L matrix contains a list of at most s_max (default value = 30) genes (characterized by
their ids) whose expressions are lower than that of the gene associated to the corresponding row, in at least
threshold_LH (default value = 99 %) of the control samples.

Each row of the H matrix contains a list of at most s_max (default value = 30) genes (characterized by their
ids) whose expressions are higher than that of the gene associated to the corresponding row, in at least
threshold_LH (default value = 99 %) of the control samples.

Below, for some genes (FOXH1, KRTAP2-3, etc.), we show the id of 10 genes of the L and H lists.

3

Size of L list

nb of L genes

F
re

qu
en

cy

0 5 10 15 20 25 30

0
50

0
10

00
15

00
20

00

Size of H list

nb of H genes

F
re

qu
en

cy

0 5 10 15 20 25 30

0
50

0
10

00
15

00
20

00

Differential expression testing

threshold = 0.4
iterations = 20
quant_test = 0.05
factor_test = 1.2

penda_res = penda::penda_test(samples = data_case, controls = data_ctrl,
threshold = threshold, iterations = iterations, L_H_list = L_H_list,
quant_test = quant_test, factor_test = factor_test)

The function penda_test infers for each gene and for each sample of the data_case matrix its deregulation
status (up-regulation, down-regulation or no deregulation). This function analyses case samples one by one.
It is based on the L_H_list and tracks for changes in relative ordering in the sample of interest. If these
changes exceed the given threshold, the gene of interest is considered as deregulated.

By default, the threshold parameter is set to 0.4 but we strongly advise users to use the vignette vignette
simulation to adjust this parameter to the user-specific data.

Results are in the form of two matrices $down_genes and $up_genes. Each row corresponds to a gene and
each column to a case sample. A TRUE entry in these matrices means that the corresponding genes are
deregulated (down or up-regulated) in the corresponding samples.

#> Need help? Try Stackoverflow:
#> https://stackoverflow.com/tags/ggplot2.

4

0

20

40

60

80

patients

%
 o

f g
en

e
de

re
gu

la
tio

n

Gene deregulation per patient

DOWN

UP & DOWN

UP

5

Penda (2441 genes x 40 samples)

−1 −0.5 0 0.5 1

Value

0
20

00
0

50
00

0
Color Key

and Histogram

C
ou

nt

Material and methods

This paragraph is automatically generated by the vignette to specify the method and data filtering parameters.
It can be directly cut and paste to the “material and methods” section of the user analysis.

The PenDA vignette of the penda package version 1.0 was executed on 3000 genes, using 40 control samples
and 40 case samples.

The data set was pretreated as following: 0 genes and 0 samples were removed during the NA values filtering
step, and 559 genes were removed because lowly expressed: under the threshold val_min = 483.92 in at least
99 % of cases.

40 controls were used to generate L and H lists using the following parameters: threshold LH = 0.99 and
s_max = 30.

The PenDA method was then applied on 40 cases, with the following set of parameters: quantile = 0.05,
factor = 1.2 and threshold = 0.4.

6

Session Information

sessionInfo()
#> R version 3.5.1 (2018-07-02)
#> Platform: x86_64-conda_cos6-linux-gnu (64-bit)
#> Running under: Debian GNU/Linux 8 (jessie)
#>
#> Matrix products: default
#> BLAS/LAPACK: /summer/epistorage/miniconda3/lib/R/lib/libRblas.so
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] ggplot2_3.1.1
#>
#> loaded via a namespace (and not attached):
#> [1] Rcpp_1.0.1 penda_0.1.0 compiler_3.5.1
#> [4] pillar_1.4.0 formatR_1.6 plyr_1.8.4
#> [7] bitops_1.0-6 mixtools_1.1.0 tools_3.5.1
#> [10] digest_0.6.19 evaluate_0.13 tibble_2.1.1
#> [13] gtable_0.3.0 lattice_0.20-38 pkgconfig_2.0.2
#> [16] rlang_0.3.4 Matrix_1.2-17 yaml_2.2.0
#> [19] xfun_0.7 withr_2.1.2 stringr_1.4.0
#> [22] dplyr_0.8.1 knitr_1.22 caTools_1.17.1.2
#> [25] gtools_3.8.1 segmented_0.5-4.0 grid_3.5.1
#> [28] tidyselect_0.2.5 glue_1.3.1 R6_2.4.0
#> [31] survival_2.44-1.1 rmarkdown_1.12 gdata_2.18.0
#> [34] purrr_0.3.2 magrittr_1.5 gplots_3.0.1.1
#> [37] scales_1.0.0 htmltools_0.3.6 MASS_7.3-51.4
#> [40] splines_3.5.1 assertthat_0.2.1 colorspace_1.4-1
#> [43] labeling_0.3 KernSmooth_2.23-15 stringi_1.4.3
#> [46] lazyeval_0.2.2 munsell_0.5.0 crayon_1.3.4

7

	Introduction
	Dataset and data filtering
	Dataset

	Method
	Data filtering
	Relative gene ordering
	Differential expression testing

	Material and methods
	Session Information

