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Appendix A: Model parameters used in simulations,
definitions of quantities in figures

For convenient reference, this Appendix includes the
parameters for all simulations. The model is given in
Eq. (1). All Bi,u = 1 and all Di,uv = d/ (M − 1). The
Aij,u are independent for different (i, j) pairs (except in
Appendix G).

In Fig. 2, the probability of Aij,u to be non-zero is c =
1/8, and the non-zero elements are sampled from a nor-
mal distribution with mean (Aij,u) = 0.3, std (Aij,u) =
0.45. The same elements Aij,u are non-zero across all
patches u. The correlation coefficient between non-zero
Aij,u in different patches is ρ = corr [Aij,u, Aij,v] = 0.95
for u 6= v. (The correlation is 0.964 when interactions
with Aij,u = 0 are also counted.) The initial (pool) di-
versity is S = 250. In Fig. 2(A), M = 1. In Fig. 2(B),
M = 8 patches and d = 10−3. The cutoff is Nc = 10−15.
For each i, j, the M values Aij,u=1..M are drawn simul-
taneously from a multi-variate normal distribution with
correlation matrix Cuv = ρ+ (1− ρ) δuv, using standard
numerical methods (e.g., as implemented in the Matlab
function mvnrnd).

Fig. 3(bottom), uses the same parameters as Fig. 2,
but with a range of values for d, S and Nc.

Fig. 4 uses the runs shown in Fig. 2(B). Standard
deviation and mean are estimated from 1601 time points
during the time period t = [104, 2 · 105]. Fig. 6 uses
multiple runs, with the same parameters as 2, except for
d = 10−4 and the values of Nc that are detailed in the
figure legend.

Fig. 5(a) uses the same parameters as 6, and Nc =
10−15. Fig. 5(c), shows the line where half of the runs
are fixed points, and half continue to fluctuate until t =
2 · 105. It uses same parameters as 6, except with D =
d/ (M − 1) = 10−4.

In Fig. 5(a), the size of the fluctuations are cal-
culated from var (ξu) =

〈
ξ2
u (t)

〉
= σ2CN,u (t, t), with

CN,u (t, t) =
〈
N2
u (t)

〉
− limt−t′→∞ 〈Nu (t)Nu (t′)〉. For

more details on the averaging, see Appendix B, Fig. A.
Fig. 5(a) shows the strength of noise at different di-

versities. Extinctions beyond the time shown in simu-
lations (t = 2 · 105) take extremely long times to hap-
pen, so reaching these lower diversities in simulations is
unfeasible. Instead, we remove species that are most
likely to go extinct. Recalling that the time to extinc-
tion is τ (1/Nc)

2MN∗eff/W , we remove species with the
lowest Neff . This is done by running the system for time
∆t = 15·103, calculating Neff as for Fig. 6, and removing
the 5 species with the lowest values of Neff . This process
is repeated. Other protocols for species removal where
attempted, such as increasing Nc in time; they give sim-
ilar results. The results are averaged over 3 runs, with

independent sampling of interactions and initial condi-
tions.

Fig. 7 shows the linear stability λstab of fixed points.
To calculate this, the equations of motion, Eq. (1), are
linearized around a fixed point N∗i,u. This gives the ma-
trix equation d−→n /dt = G−→n , where −→n is a vector with
one entry for each patch of a surviving species, with
ni,u = Ni,u − N∗i,u. G is a square matrix, which de-
pends on the equilibrium abundances N∗i,u. For a state
with fluctuating abundances, we use the time average of
Ni,u (t) for N∗i,u. Let {λj} be all the eigenvalues of G.
Then λstab = maxj < (λj), where < (..) denotes the real
part. Note that a fixed point is stable if λstab < 0. The
results are averaged over the same 3 runs as in Fig. 5(a).

Appendix B: DMFT equations

In this section, we present the full DMFT equations,
and explain how they can be reduced to the steady-state
equations quoted in the main text.

We consider as a starting point equation Eq. (1). For
the sake of clarity, we derive DMFT under simplifying
assumptions, but the result is much more robust and
could be applied to different ecology models as well as
real data [1]. DMFT for ecological models has a dou-
ble valency analogous to the one of mean-field theories in
physics: it is at the same time an exact theory for some
simple models, and a powerful approximation largely ap-
plicable to a broad range of systems. For the sake of
clarity, the derivation assumes a fully connected model
(all interactions are non-zero), but the results hold for
any connectivity C as long as C � 1, see remark at the
end of this Appendix.

The assumptions which make DMFT exact are the
following: all constants Ni,u(0), Bi,u, Di,uv and Aij,u
are random variables, sampled from known distributions.
More precisely:

• In each patch u and for all species i, the parameters
Xu = {Ni,u(0), Bi,u, Di,uv}Si=1 are drawn from a
probability distribution P which is a product mea-
sure Pu(Xu) =

∏S
i=1 P(Xu

i );

• The interaction matrix can be decomposed as
Aij,u = µ/S + σ/

√
S aij,u. aij,u are standard ran-

dom variables with mean zero, variance one, and
correlation:

E [aij,u akl,v] = δik δjl ρuv

where we used the Kronecker symbol δik, and ρuv =
ρ + (1 − ρ)δuv is a uniform correlation ρ between
patches.
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With these conventions, we rewrite Eq. (1) in the follow-
ing way:

d

dt
Ni,u = Ni,u [Bi,u −Ni,u − µmu(t) + ηi,u(t)]

+
∑
v

Di,uv (Ni,v −Ni,u)

where mu(t) = S−1
∑S
i=1Ni,u(t) is the mean abundance

in patch u, and ηi,u(t) = −σS−1/2
∑S
j=1 aij,uNj,u(t) is

a species-and-patch-dependent noise.
The DMFT equation can be obtained by following

Ref. [2]: in the large-S limit, it can be shown that the
statistics of this multi-species deterministic process cor-
responds to the following one-species stochastic process,
for each patch.

d

dt
Nu = Nu [Bu −Nu − µmu(t) + ηu(t)]

+
∑
v

Duv (Nv −Nu) (B1)

where {Nu(0), Bu, Duv} are sampled from the distribu-
tion P(Xu), mu(t) is a deterministic function, and ηu(t)
is a zero-mean Gaussian noise. The variability from one
species to another becomes in the DMFT setting the ran-
domness contained in {Nu(0), Bu, Duv} and ηu(t).

To make this point crystal clear, let us introduce two
different averages:

• Y averages over the stochastic process in Eq. (B1):
over the stochastic noise ηu and over the distribu-
tion P(Xu);

• ES(Y ) denotes the statistical average over the
deterministic multi-species system. ES(Y ) =∑S
i=1 Yi, and therefore also includes sampling of

Xu
i .

DMFT represents in terms of a stochastic process the
deterministic dynamical system governing the dynam-
ics of the S species in the ecosystem. In consequence,
averages over the stochastic process coincide with aver-
age over species [2–4]: for a given observable Y : Y =
limS→∞ ES(Y ). This is analogous to the representation
of the environment of an open physical system in terms
of thermal noise, as it is done e.g. in the case of the
Langevin equation.

The second important aspect of DMFT is self-
consistency. This is related to the fact that the noise
is induced by the dynamics of the species themselves, so
its properties can be obtained from dynamical averages:

{
mu(t) = Nu(t)

〈ηu(t)ηv(t
′)〉 = σ2 ρuv Nu(t)Nv(t′)

where we used a last average 〈·〉 over the stochastic noise
only, in order to define its covariance. Henceforth we

use the notation CNuv(t, t′) = ρuv Nu(t)Nv(t′). These re-
lations exactly take into account the correlations that
emerge between the abundances and the interactions.

We now show how DMFT equations simplify for a
time-translationally-invariant state of the system, which
is in general reached after some transient time. In this
state, all one-time observables become constant in time,
and two-time observables become functions of the time
difference only.

{
mu = Nu(t)

CNuv(t, t
′) = CNuv(t− t′)

The correlation CNuv(t− t′) decays at large time differ-
ences to a non-zero constant, leading to a static contribu-
tion to the noise term. In order to disentangle the static
part and the time-fluctuating part of the noise, we per-
form the decomposition ηu(t) = zu + ξu(t) such that zu
and ξu(t) are independent zero-mean Gaussian variables
and processes verifying:

〈zuzv〉 = σ2 lim
t−t′→∞

CNuv(t− t′)

and subsequently 〈ξu(t)ξv(t
′)〉 = σ2 CNuv(t − t′) −

σ2 limt−t′→∞ CNuv(t− t′) which vanishes for t− t′ →∞.
Substituting this decomposition into Eq. (B1), we ob-

tain:

d

dt
Nu = Nu [N∗u −Nu + ξu(t)]

+
∑
v

Duv (Nv −Nu) (B2)

where N∗u = 1− µmu + zu is a Gaussian variable, whose
statistics is described in Appendix D. We checked nu-
merically that for small migration D, the noise is only
correlated between patches through its static part: for
u 6= v, ξu(t) ξv(t

′) � zu zv, as presented in Fig. A. In
this case, we can write the self-consistent closure as fol-
lows:



mu = lim
t′�1

Nu(t′)

〈zuzv〉 = σ2 lim
t�t′�1

CNuv(t, t
′)

〈ξu(t)ξv(t
′)〉 = δuv σ

2

[
CNuv(t, t

′)− lim
t�t′�1

CNuv(t, t
′)

]

As explained above, DMFT can be implemented as an
approximation for a large variety of systems. In this case
one has to infer the average µ, the standard deviation
σ of interactions, and the distribution P(Xu) from the
data (we remind that Xu = {Nu(0), Bu, Duv}) and use
them as an input to define an effective model. The gen-
eralization to patch-dependent cumulants µu and σu is
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Figure A. Covariance of the abundances in distinct patches.
We use the general notation cov(Yu, Yv) = ES [Y

c
u (t)Y

c
v (t
′)]

and Y c
u (t) = Yu(t) − ES [Yu(t)]. Left: In full lines we show

the abundance covariance within a patch u = v, and across
patches u 6= v in dotted lines. The correlation in abundances
across patches is mainly static: dotted lines are reasonably
flat. In other words, the correlation of ξu with ξv for u 6= v
is very small. Right: The covariance in ξ is shown to reach
a TTI state. It only depends on t − t′ after t′ = 105: the
colored curves collapse. In this data, 100 distinct simula-
tions were averaged, with parameters (S, µ, σ |M,ρ, d,Nc) =
(400, 10, 2 | 8, 0.95, 10−10, 10−15).

quite straightforward. So is the generalization to patch-
dependent correlation ρuv. With the assumptions de-
scribed below, the fraction of coexisting species S∗/S is
finite when S is large, so that resident diversity S∗ in
each community is also large.

We have derived DMFT for a completely connected set
of interactions Aij . A different way to obtain DMFT is
considering a finite connectivity network of interactions
Aij , e.g. the one produced by a Erdos-Renyi random
graph with average connectivity per species C or a regu-
lar random graph with connectivity C. In these cases, for
each link ij one generates a random variable with average
µ/C and variance σ2/C and set it to Aij . In the large
connectivity limit, C →∞, each species interacts with a
very large number of species and one can replace the de-
terministic interaction with an effective stochastic noise,
as done for a completely connected lattice. Although the
resulting DMFT equations are the same, the two cases
are quite different: in the former a species interact with
C � S species whereas in the latter a species interacts
with C = S species. The equivalence of DMFT for com-
pletely connected lattices and finite connectivity ones in
the C →∞ limit has been thoroughly studied in physics
of disordered systems in the last twenty years [5].

In addition, the paper focuses on the case where migra-
tion connects all patches to one another. But the basic
DMFT framework, Eq. (B1), is valid even if only certain
patches are connected, and migration is zero otherwise.
This can allow for analysis of different spatial connec-
tivities, such as lattices reperesenting finite-dimensional
space, and is an interesting direction for future work.

Appendix C: Extinction probability of a species

Here the probability of extinction of a species is pre-
sented, at the limit Nc � D � 1. More specifically, we
assume that Nc is small compared to the typical fluctu-
ations of the abundances. In addition, in simulations we
see that it is reasonable to assume complete lack of syn-
chrony, namely that the noise ξu is uncorrelated between
different patches, see Appendix B, Fig. A. We will there-
fore assume that in the following calculation. Finally, we
assume that for at least one patch, N∗u > 0, otherwise
the species goes quickly extinct.

Within DMFT, the problem thus becomes ones of cal-
culating the extinction probability of a meta-population
(single species), under environmental fluctuations, that
are uncorrelated between the different patches. We only
present the result here; a full account will be given else-
where.

Let xu ≡ lnNu. The equations of the DMFT, Eq.
(B1), become

∂txu = N∗u − exu − σξu +D
∑
v

(
exv−xu − 1

)
. (C1)

Here D = d/ (M − 1). We look for a rare realization
of {ξu} that makes all the xu reach xc = lnNc, in the
case when the cut-off is low, xc → −∞. The calculation
proceeds within the framework of large-deviation theory
[6]. First, one defines the “action”

J =
1

2W

∫ tf

dt

M∑
u=1

ξ2
u , (C2)

with ξu substituted with its value from Eq. (C1), and
W defined as in the main text. Here we approximated
the noise correlations by white noise, which is justified
here as the extinction event takes a time which is long
compared to the correlation time. We assume that D is
small.

Then the mean time to the occurrence of such an event
scales as P ∼ eJmin with Jmin the action J minimized
over all population trajectories {xu (t)}u=1..M that start
at t → −∞ at the typical value of xu, obtained by the
zero-noise fixed point of Eq. (C1), and terminate at tf
at xc = lnNc .

We first describe the result for M = 1. In this case
there is only one patch, u = 1, with N∗1 . If N∗1 < 0 the
species is extinct. On the other hand, if N∗1 > 0, then we
obtain the known result [7, 8]

Jmin =
2xc
W

N∗1 .

The result for all M is a generalization of this result, of
the form

Jmin =
2xc
W

MN∗eff .
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To describe the calculation ofN∗eff , order the patches so
that N∗1 ≥ N∗2 ≥ .. ≥ N∗M . Then there exists 1 ≤ m ≤M
such that

w ≡ −

√√√√ 1

m

m∑
u=1

(N∗u)
2
,

and where w satisfies: w ≤ N∗u for all u ≤ m, and w > N∗u
for all u > m. Such a partition can be shown to always
exist. Then

N∗eff ≡
1

4M

∑
{u}+

(N∗u − w)
2

w
.

The derivation will be given elsewhere. We illustrate the
result by considering two cases. First, in the M = 1
example, since N∗1 > 0, the partition is {u}+ = {1} and
{u}− the empty set. Indeed, this gives w = −N∗1 , so w ≤
N∗1 . Then N∗eff = N∗1 and Jmin = 2xc

W N∗1 , so the result
for M = 1 is reproduced. Another simple case is when
there are M patches with identical carrying capacities
N∗u=1..M = N∗. Here {u}+ = {1, ..,M} and w = −N∗.
Then N∗eff = N∗, and Jmin = 2xc

W MN∗eff = 2xc
W MN∗.

This result is intuitively clear: to go extinct, the species
must go extinct in all patches at once, so the probability
is P ∼ exp

(
xc
WMN∗

)
∼ (P1)

M , where P1 is the result
for M = 1.

Appendix D: Diversity and stability at low
migration rates

We use notations from Appendix B. Within the time-
translational-invariant state:

1

Nu

dNu
dt

= N∗u −Nu + ξu (t) +
∑
v∼u

Duv

(
Nv
Nu
− 1

)
Consider the case of low migration, D → 0+. We now
develop a theory assuming that the amplitude of the en-
dogenous fluctuations,

W ≡
∫
dt Cξ (t, t′) ,

remains finite in the limit D → 0+. Assume the species
survives, i.e. there is at least one patch with N∗u > 0. If
N∗u < 0 then Nu = O (D). If N∗u > 0 then Nu = O (1)

and therefore
∑
v∼uDuv

(
Nv
Nu
− 1
)

= O (D). Taking the
time average of the above equation

0 =
1

Nu

dNu
dt

= N∗u −Nu +O (D)

and therefore Nu = N∗u +O (D).
The previous arguments lead to the conclusion that in

the D → 0+ limit Nu = N∗u if N∗u > 0 and is equal to zero

otherwise. In the following we provide more detail more
this argument and its possible limitations. For this last
equality to be valid, we need that

∑
v∼u

(
Nv
Nu
− 1
)

will

be finite, so that D
∑
v∼u

(
Nv
Nu
− 1
)
will indeed be small.

This might break if Nu can be small while some other Nv
remains O (1). An estimate for that proceeds by noting
that the carrying capacity of patch u in the presence of
other patches is larger or equal to N∗u −MD ' N∗u , its
carrying capacity alone. If patch u fluctuates alone, then

dxu
dt

= N∗u + ξ (t)⇒ P (x) ∼ e
2N∗x
σ2W

This gives for 1/Nu

e−xu ∼
∫ 0

−∞ e
x
(
N∗u
W −1

)
dx∫ 0

−∞ ex
N∗u
W dx

=
N∗u
W + 1
N∗u
W

= 1 +
W

N∗u

For any given N∗u this is finite. It diverges as N∗u → 0.
Therefore the migration term is negligible only if DW

1−D '
DW � N∗u . (Note that migration itself would limit Nu
going below much below DNv, which would make this
term smaller.) The main approximation (or limitation)
of our approach is the assumption that W remains finite
in the small D limit. This is shown to hold in simula-
tions presented in Appendix B. It breaks down if the
noise develops long-lasting correlations in time. Our ap-
proximation will be nevertheless good for large |N∗u | and
for weak endogenous fluctuations.

We now used the relationship discussed above between
Nu and N∗u to determine the statistics of N∗u . We shall
use the term “source” for patches where N∗u > 0, and
“sink” otherwise1. In order to understand the correla-
tion between the sources in the different communities,
we unpack N∗u using Appendix B. Taking the time-
average is equivalent to averaging over the dynamical
noise ξ. Therefore, in patch u for species i, zi,u =

−σS−1/2
∑
j aij,uNj,u = −σS−1/2

∑
j,+ aij,uN

∗
j,u. The

sum
∑
j,+ means that we only sum over N∗j,u > 0.

Here, we recall that aij,u are standard random variables
with mean zero, variance one, and correlation between
patches:

E [aij,u akl,v] = δik δjl ρuv

where we used the Kronecker symbol δik.
Therefore:

N∗i,u = 1− µmu − σS−1/2
∑
j,+

aij,uN
∗
j,u (D1)

1 The term “source” is used here so as to include patches (some-
times referred to as pseudo-sinks) where a species might still
receive migration from patches with even larger N∗u . But the
contribution of this migration is small and not required for its
persistence.
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where we recall mu =
〈
Ni,u

〉
=
〈
N∗i,u

〉
+
. We can now

compute the different moments of the multivariate Gaus-
sian random variable N∗u , using equation (D1). We ob-
tain the closure:

{
mean [N∗u ] = 1− µ

〈
N∗i,u

〉
+

covariance [N∗u , N
∗
v ] = σ2ρuv

〈
N∗i,uN

∗
i,v

〉
+

When u = v, as ρuu = 1, we find the expected
single community result. In particular, mean [N∗u ] and
variance [N∗u ] do not depend on the patch u.

We numerically solve the closure in a self-consistent
way: start with a guess for

〈
N∗i,uN

∗
i,v

〉
+
, and then (1)

Produce many samples of the vector N∗u=1..M and (2)
calculate the next estimate for

〈
N∗i,uN

∗
i,v

〉
+
, by averag-

ing only over N∗i,u and N∗i,v that are both positive. For
stability of this numerical scheme, we only replace half
the samples at each iteration. We use 105 samples and
1000 iterations. The algorithm is always found to con-
verge to the same solution.

Given covariance [N∗u , N
∗
v ], the distribution of N∗i,u is

completely specified: it is a multivariate Gaussian in u,
has the single-patch statistics of a single community, and
a known covariance between patches. The solution can
then also give the distribution of the number of sourcing
patches.

In addition, we can compute the correlation coefficient
ρN∗ of theN∗u ’s. We use here our simple case of a uniform
correlation ρa between patches ρuv = ρa + (1 − ρa)δuv.
We introduce the notation ρa instead of ‘ρ’ in this section
in order to avoid confusion with ρN∗ .

ρN∗ ≡
covariance [N∗u , N

∗
v ]

variance [N∗u ]
= ρa

〈
N∗i,uN

∗
i,v

〉
+〈

N∗i,u
2
〉

+

The results are surprising: even when ρa → 1, the overlap
between communities is not perfect (ρN∗ < 1), so the
total diversity is larger than the one in each patch. This
happens exactly at the transition to chaos at σc =

√
2,

see Fig. B.
On Fig. D, we compare the theory predictions to sim-

ulations. In terms of diversity, the theory appears to give
an upper bound to the simulations. The difference be-
comes larger at higher values of σ, and for ρa closer to
one. To look further into this difference, it is useful to
study diversity as a function of the value of N∗eff of each
species. As shown in Fig. 6 in the main text, most of the
difference in diversity is due to low values of N∗eff , which
are precisely the species that are more likely to go ex-
tinct, with good agreement with theory at higher values
of N∗eff . This is demonstrated in Fig. C, which shows
that the theoretical prediction for the number of species
with N∗eff > 0.2 is closer to simulation results than the
predictions for total diversity. At the moment we do not
know if remaining differences are because the theoretical
argument is only approximate, or whether in principle,
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a
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Figure B. Theoretical predictions for the diversity as a func-
tion of σ for M = 1, 8 patches, ρa = 0, 0.5, 0.95 and ρa → 1.
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Figure C. The fraction of persistent species S∗/S (circles) is
compared to theoretical bound (blue dashed line), for differ-
ent values of Nc. Also shown is the fraction of species above
N∗eff > 0.2, compared to the theoretical bound for that (red
dotted line), showing better agreement than for the full di-
versity. Simulations use the same parameters as in Fig. 6,
but with a range of values for Nc (Fig. 6 corresponds to the
points at Nc = 10−15).

with exceedingly low values of Nc and D, it could be
approached by simulations for any σ.

To find the boundary of parameter space where fixed
points loose their stability and the system becomes
chaotic, we look at the linear stability of persistent
species. When D is small, the species that are not
sourced in each patch do not affect the stability, and so
the question simplifies to single patch stability, which
when corr [Aij , Aji] = 0, results in σc =

√
2 and with

1/2 of the species being sourced in each patch [9].



6

0.0 0.2 0.4 0.6 0.8 1.0

0.7

0.8

0.9

1.0

di
ve

rs
ity

 S
*/S

= 1

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

di
ve

rs
ity

 S
*/S

= 2

0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.005

0.010

Co
v[

N
iu

,N
iv

]

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

Co
v[

N
iu

,N
iv

]

0.0 0.2 0.4 0.6 0.8 1.0
a

0.00

0.25

0.50

0.75

1.00

Co
v[

N
iu

,N
iv

] /
 V

ar
[N

iu
]

theory
theory M=1

0.0 0.2 0.4 0.6 0.8 1.0
a

0.00

0.25

0.50

0.75

1.00

Co
v[

N
iu

,N
iv

] /
 V

ar
[N

iu
]

(D, Nc) = (10 4, 10 6)
(D, Nc) = (10 10, 10 20)

Figure D. Numerical checks of the theoretical predictions. From top to bottom, we consider three different observables: the
diversity, the covariance in the abundances across distinct patches, and this covariance rescaled by the one patch variance.
By varying σ, we can control the state of the system: on the left (σ = 1), we show the results for fixed points; on the right
(σ = 2 >

√
2), we show the results for persistent dynamical fluctuations. In dotted lines, we plot the theory predictions, as

functions of the correlation between patches’ interactions ρa. We compare them to simulations with parameters (S,M, µ) =
(400, 8, 10), and obtained by simulations run until final time tf = 104. We eventually vary the couple (D,Nc). We use 50
distinct samples of the simulations for each combination of parameters, in order to get error bars and relevant statistics. The
cut-off is implemented via patch-wise extinctions when the abundance goes below the threshold in each particular patch, in
which case migration out of the patch is turned off while still allowing inward migrations.
On the left side, we can see that the theory is exact in the fixed point regime. In this regime, as ρa → 1, the predictions are
equivalent to the one patch M = 1 theory, as all patches are the same. In the persistent fluctuation state, the theory is only a
good approximation. More precisely, the predictions become more accurate as D and Nc go to zero, as expected. In addition,
the agreement gets worse when ρa → 1, because synchronization can occur.
In the top right figure, we show that the prediction for diversity is an upper bound. In the bottom right figure, we see that
indeed the prediction for ρn is still far from 1 when ρa → 1, for the values of D,Nc used in the simulations.

Appendix E: Single patch (M = 1)

Here we show that in principle a single patch can reach
and maintain a dynamically fluctuating state. However,
this requires prohibitively large S, not attainable in prac-
tice. In Fig. E and Fig. F we show results of a numerical
solution [2] to the DMFT equations detailed in Appendix

B. At extremely low values of Nc the system appears to
reach a final diversity above the May bound and, hence,
to be chaotic. DMFT however describes the behavior in
the S � 1 limit. When full simulations of the model in
Eq. (1) are carried out at finite S, they diversity falls
somewhat below the DMFT final diversity, leading to a
fixed point, rather than a chaotic state, see Fig. F. This
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Figure E. DMFT numerics for a single patch,M = 1, showing
that chaos is in principle possible here, although for unreal-
istic values of model parameters. (A) The fraction of species
above different values of N0, P (N > N0) is plotted as a func-
tion of time, for different values of N0. (B) The curves for dif-
ferent N0 collapse when P (N > N0) − φ∞ (N0) ∼ |lnN0| /t.
Here φ∞ (N0) is a fitted parameter, the extrapolated value
of P (N > N0) at long times. (C) The values of φ∞ (N0)
are well above the linear stability bound (“May bound”), and
at (very) low N0 come quite close to the theoretical max-
imal value for φ∞ (N0), predicted in Appendix D. Here
σ = 2, µ = 10, Nc = 10−120.
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Figure F. The DMFT solution and the simulations only agree
up to times t ∼ 103, after which the diversity in the simu-
lations reduces more rapidly and reaches a fixed point. This
means that the convergence to the DMFT solution is slow
with S.

finite-size correction to the DMFT result are important

since they show that maintaining a dynamically fluctu-
ating state for realistic values of S is not possible for
M = 1.

Appendix F: Correlations of interactions in a pair of
species

In the main text we assumed that Aij,u is sampled
independently from Aji,u. Here we show that the long-
lived endogenous fluctuations can be found even if this
assumption is relaxed. For this purpose, we consider a
symmetric network of non-zero Aij,u, namely Aij,u 6= 0
if and only if Aji,u. We define γ the correlation of the
non-zero elements γ = corr [Aij,u, Aji,u]Aij,u 6=0. Fig. G
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Figure G. (A) The diversity S∗ (t) /S for two runs with γ ≡
corr [Aij,u, Aji,u] 6= 0. (B) Selected trajectories of Ni,u (t) for
the run with γ = 1/4.

shows two simulations, one with γ > 0 and the other with
γ < 0. In both cases the system relaxes to a long-lived
state with fluctuating abundances, without further loss
of diversity up to time 2 · 105. They are intended solely
to demonstrate that conditions with γ 6= 0 exist, rather
than a systematic exploration of such cases.

The parameters for the simulations (using the notation
of Appendix A) are the following:

Run with positive γ: γ = 1/4, S = 350, mean (Aij,u) =
0.075, std (Aij,u) = 0.175, c = 0.357, M = 8, d = 10−3,
ρ = 0, Nc = 10−15.

Run with negative γ: γ = −1/2, S = 250,
mean (Aij,u) = 0.075, std (Aij,u) = 0.358, c = 0.5,
M = 8, d = 10−3, ρ = 0, Nc = 10−15.
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