
S1 Software – MATLAB code used for model calibration,
analysis and validation∗

This document describes the MATLAB software implemented to calibrate, analyse and vali-
date the models discussed in the main text. The software can be used in particular to reproduce
the results in the main text. A summary of the model equations, model parameters and param-
eter values implemented by the code is reported in the last section of this document.

Quick usage

We assume the reader has unzipped the zipped folder containing this document, the file main.m

and the subfolder script. Run MATLAB and set the current folder to the folder containing the
script main.m. To generate all the figures of the main text, it suffices to call the function

main(run_estimation,run_heatmap,run_bootstrap)

from the MATLAB command window with appropriate parameter values. In particular, the
call main(1,1,1) performs calibration, analysis, and validation of the model and shows the
resulting figures. The (faster) call main(2,2,2) instead prepares and shows the figures from the
previously stored results. The plotted figures report the reference to the corresponding figure of
the manuscript∗ in their title. More options are discussed below.

Note: To avoid potential issues with the plotting, the reader is advised to close previously open
figures and avoid interaction with the figures while the code is running.

Main

The function main accepts as input

• run_estimation: 0 skips parameter estimation from the data, a process that (depending
on the computer) may take more than a minute, and uses previously computed estimation
results; 1 performs the estimation, then saves and plots the results; 2 just loads and plots
previously computed estimation results.

• run_heatmap: 0 skips the generation of the heat-maps D − Gin, a process that may take
more than a minute; 1 computes the steady states, then saves and plots the results; 2 loads
and plots previously computed results

• run_bootstrap: 0 skips the a-posteriori identifiability analysis of the estimated parameters,
a process that takes from several minutes to more than an hour (depending on the machine);
1 performs the a-posteriori identifiability analysis via bootstrapping, then saves and plots
the results; 2 loads a previously computed analysis and plots the results.

Initially, the main.m adds the paths of the subfolder script containing the scripts and the data.
Then, it sequentially runs the functions

• dynamics.m to generate the time evolution of the variables in the bioreactor operating in
continuous mode (demonstration figures not included in the manuscript)

∗Supporting Information of “Enhanced production of heterologous proteins by a synthetic microbial commu-
nity: Conditions and trade-offs” (M. Mauri, J.-L. Gouzé, H. de Jong, E. Cinquemani)

1



• enjalbertData.m, basanData.m and bettenbrockData.m to generate Figure 3A, B, C and
D, respectively, regarding the model validation

• DGinMap.m to generate the steady-state analysis of the consortium in chemostat of Figures
5 and 6 of the main text (for several values of dilution rate D and glucose inflow Gin)
for the case Yh = 0.2 (right panels of Figure 5; the left panels of the same figure, corre-
sponding to the case Yh = 0, can be obtained by changing the value of Yh in the function
parameters_values.m)

• fedbatch.m to generate the Figure 7 of the main text regarding the protein production
dynamics in fed-batch

• bootstrap_fit.m to generate Figure S1 in the supporting information of the a-posteriori
identifiability analysis.

Each function can also be run separately by accessing the folder script and calling the corre-
sponding .m file from the MATLAB command window, as described in the following.

Dynamics

The script dynamics.m in the folder script simulates the dynamics of the system under several
conditions. [T,X,dx,r] = dynamics(run_estimation,batchChemFed,producer,cleaner,hproteinP)

accepts as input

• run_estimation: 0 imports the already estimated parameters without plotting; 1 estimates
the parameters by fitting the data and plots the results as in Figure 2 of the main text;
2 imports previously estimated parameter values and plots the corresponding estimation
results

• batchChemFed: 0 simulates an experiment in batch; 1 in chemostat operating in continuous
mode; 2 in fed-batch

• producer, cleaner and hproteinP can be set to 0 or 1 to simulate the presence (0) or
absence (1) of the producer, cleaner and H protein production, respectively,

and gives as output

• T, the vector containing the time points of the simulation

• X = [G,A,BP,H,BC], containing the time evolution of the variables glucose, acetate, pro-
ducer biomass, H protein and cleaner biomass

• dx = [dG,dA,dBP,dH,dBC], containing the time evolution of the state derivatives

• r = [muP,muC,rgupP,raoverP,raupP,rH,rgupC,raoverC,raupC,kdeg], containing the
time evolution of the rates: producer growth rate, cleaner growth rate, producer glucose
uptake rate, producer acetate overflow rate, producer acetate uptake rate, heterologous
protein production rate, cleaner glucose uptake rate, cleaner acetate overflow rate, cleaner
acetate uptake rate and degradation rate.

The script dynamics.m calls

• Model.m that defines the system of differential equations to solve

2



• parameters_values.m containing the values of the parameters. If run_estimation is
1, it runs the parameter estimation by fitting the data in Figure 2 in the main text via
findParameters.m. The latter minimizes squared fitting residuals by calling minimizeChiSquare.m.
It also calls pHratio.m, which adapts the value of the parameter Θa to the hypothesized
pH, as described in the main text. The data utilized are stored in the folder script/data.
The values of the parameters are stored in the structure parameters

• simulate_dynamics.m and plot_dynamics.m , respectively solving the system of differen-
tial equations implemented in Model.m and plotting the results.

The structure parameters has fields

• parameters.par containing the parameter values

• parameters.x0 containing the initial conditions of the state variables

• parameters.plot and parameters.colors defining several plotting options.

Model validation

The functions enjalbertData.m, basanData.m and bettenbrockData.m solve the system of
differential equations defined in Model.m. Each of them loads the corresponding experimen-
tal initial conditions by running parameters_values.m and the publicly available experimen-
tal data (extracted from [1, 2, 3] from the script/data folder. Dynamics are simulated with
simulate_dynamics.m or generateDGinMap.m (see below), and results are plotted as presented
in Figure 3 of the main text.

Steady-state analysis

The function DGinMap(run_heatmap,plot_heatmap,plot_rates) generates the steady-state
analysis of the consortium in chemostat operating in continuous mode as presented in Figures 5
and 6 of the main text, by varying the values of the dilution rate D and of the glucose inflow
concentration Gin. If run_heatmap is set to 0, the generation of the heat-maps D − Gin is
skipped; if set to 1, steady states are computed numerically and results are plotted; if set to 2,
results from a previous analysis are loaded and plotted. If plot_heatmap and plot_rates are
set to 1, the function plots Figures 5A,B,C-F, and Figure 6A-C. The function DGinMap

• defines the differential equation of the model via Model.m

• loads the values of the parameters running parameters_values.m. First, it solves the
system in the presence of the cleaner, then in the absence of the cleaner

• generates a grid of values of D and Gin with create_heatmapparam

• finds the steady state solution of the system of differential equations by numerical integra-
tion with the function generateDGinMap, via simulate_dynamics.m, using the MATLAB
solver ode15s

• saves the solutions in the data files solSSPC.mat and solSSPnoC.mat in the case of cleaner
presence and absence, respectively. The saved data contain the value of the dilution rate,
glucose inflow concentration, variables at steady state and all the rates:
solSS = [D,Gin,G,A,BP,H,BC,dG,dA,dBP,dH,dBC,muP,muC,rgupP,raoverP,raupP,rH,

rgupC,raoverC,raupC,kdeg]

3



• calls plot_DGinMap and DGinPlots to plot the map of stable solution as in Figure 5A,B,
6A and Figure 5C-F, Figure 6B,C, respectively.

Simulation in fed-batch

The script fedbatch.m generates Figure 7 of the main text regarding the protein production
dynamics in fed-batch. It

• defines the differential equation of the model via Model.m

• laods the values of the parameters running parameters_values.m

• simulates the dynamics with simulate_dynamics in the presence and absence of cleaner
strain

• plots the results with plot_dynamicsFedBatch.

Identifiability analysis

This analysis is performed by the function bootstrap_fit(run_bootstrap). If run_bootstrap
is set to 0, the a-posteriori identifiability analysis is skipped; if set to 1, the analysis is performed
via bootstrapping (see manuscript and code for details) and results are plotted as in supporting
figure S1 Fig; if set to 2, a previously saved analysis is imported and the corresponding results
are plotted. The script

• defines the differential equation of the model via Model.m

• loads the experimental data from the script/data folder

• generates 1000 new datasets

• fits the data with minimizeChiSquareBoot.m

• plots the result as in figure S1 Fig.

Requirements

The code was tested on typical installations of MATLAB 2017 and 2019 on Linux and Windows
machines.

4



Variable Unit Meaning

G g L−1 Glucose concentration
A g L−1 Acetate concentration
BP gDW L−1 Autocatalytic biomass concentration of the producer
H gDW L−1 Heterologous protein concentration
BtotP gDW L−1 Total biomass concentration of the producer
BC gDW L−1 Biomass concentration of the cleaner

Table S1.1: List of variables. Meaning and units of the variables of the model of Eqs S1.1–S1.5
describing the producer strain, with rates as in Eqs S1.6–S1.8, and the cleaner strain, with rates as in
Eqs S1.9–S1.11.

Summary of the model equations

The system of ordinary differential equations describing the model of the producer-cleaner con-
sortium, as developed in the main text and implemented in the code, is given by

dG

dt
= −rgupP BP − rgupC BC + D (Gin −G), (S1.1)

dA

dt
=

(
raoverP − raupP

)
BP +

(
raoverC − raupC

)
BC −DA, (S1.2)

dBP

dt
= (1 − Yh)

(
Yg r

g
upP + Ya (raupP − raoverP )

)
BP − kdeg BP −DBP , (S1.3)

dH

dt
= Yh

(
Yg r

g
upP + Ya (raupP − raoverP )

)
BP − kdegH −DH, (S1.4)

dBC

dt
=

(
Yg r

g
upC + Ya (raupC − raoverC)

)
BC − kdeg BC −DBC . (S1.5)

The glucose uptake, acetate uptake, acetate secretion rates of the producer are expressed by

rgupP (G,A) = kg
G

G+Kg

Θn
a

An + Θn
a

, (S1.6)

raupP (G,A) = ka
A

A+Ka

Θm
g

rgupP (G,A)m + Θm
g

, (S1.7)

raoverP (G,A) = kover max(0, rgupP (G,A) − l). (S1.8)

The glucose uptake, acetate uptake, acetate secretion rates of the cleaner are

rgupC(G,A) = k∆PTS
G

G+Kg

Θn
a

An + Θn
a

, (S1.9)

raupC(G,A) = ka
A

A+Ka

Θm
g

rgupC(G,A)m + Θm
g

+ kAcs
A

A+KAcs
, (S1.10)

raoverC(G,A) = kover max(0, rgupC(G,A) − l). (S1.11)

Table S1.1 and Table S1.2 list the meaning of the variables and of the parameters used in the
equations. In view of these expressions and parameters, the growth rates of the producer and
cleaner are given by

µP =
(
Yg r

g
upP + Ya (raupP − raoverP )

) BP

BtotP
− kdeg,

µC = Yg r
g
upC + Ya (raupC − raoverC) − kdeg,

5



Parameter Unit Meaning

D h−1 Dilution rate
Gin g h−1 Glucose inflow rate rate

kg 1.53 g gDW−1 h−1 Glucose maximal uptake rate
Kg 0.09 g L−1 Glucose half-maximal saturation
Θa 0.52 g L−1 Acetate inhibition constant
n 1 Acetate inhibition strength
kover 0.17 Acetate overflow maximal overflow rate
l 0.7 g gDW−1 h−1 Glucose uptake rate threshold for acetate overflow
ka 0.97 g gDW−1 h−1 Acetate maximal uptake rate
Ka 0.5 g L−1 Acetate half-maximal saturation
Θg 0.25 g gDW−1 h−1 Carbon catabolite repression inhibition constant
m 1 Carbon catabolite repression strength
Yg 0.44 gDW g−1 Biomass yield coefficient on glucose
Ya 0.298 gDW g−1 Biomass yield coefficient on acetate
Yh 0.2 Heterologous protein yield constant
kdeg 0.0044 h−1 Degradation rate

k∆PTS 0.38 g gDW−1 h−1 Glucose maximal uptake rate for ∆PTS strain
kAcs 1.46 g gDW−1 h−1 ACS acetate maximal uptake rate
KAcs 0.012 g L−1 ACS acetate half-maximal saturation

Table S1.2: List of parameters and their values. First block: Bioreactor parameters (any nonneg-
ative values). Second block: Parameters of Eqs S1.1–S1.5 (producer and cleaner strains) and Eqs S1.6–
S1.8 (producer strain). Third block: Parameters of Eqs S1.9–S1.11 (cleaner strain).

6



with BtotP = BP +H.

Supporting references

[1] Enjalbert B, Millard P, Dinclaux M, Portais JC, Létisse F. Acetate fluxes in Escherichia
coli are determined by the thermodynamic control of the Pta-AckA pathway. Sci Rep.
2017;7:42135.

[2] Steinsiek S, Bettenbrock K. Glucose transport in Escherichia coli mutant strains with defects
in sugar transport systems. J Bacteriol. 2012;194(21):5897–908.

[3] Basan M, Hui S, Okano H, Zhang Z, Shen Y, Williamson JR, et al. Overflow metabolism in
Escherichia coli results from efficient proteome allocation. Nature. 2015;528(7580):99–104.

7


