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1 Spectral power 1

The total spectral power
∑M/2
k=1 Pk is not invariant to scaling. Multiplying each (xj , yj) 2

by a scale factor ρ yields a scale factor ρ2 in each Pk. Experimental procedures were 3

designed to yield approximately similar sized organoids. We therefore normalized the Pk 4

terms to remove the scale factor, focusing on shape rather than scale. Normalization 5

was performed by re-scaling each organoid to a unit circle. A unit circle centered at the 6

origin with coordinates (xj , yj) = (cos[2πj/M ], sin[2πj/M ]) has Fourier components x̂k 7

that may be calculated explicitly, 8

x̂k =

M−1∑
j=0

e−2πijk/M cos(2πj/M)

= (1/2)

M−1∑
j=0

e−2πij(k−1)/M + (1/2)

M−1∑
j=0

e−2πij(k+1)/M . (1)

These sums are of the form Sn =
∑M−1
j=0 e−2πijn/M with n = k− 1 and n = k+ 1. For n 9

mod M = 0, Sn = M . For other values of n, 10

Sn = (1− e−2πin)/(1− e−2πin/M ) = 0. (2)

Thus for the unit circle and k ∈ {0,±1, . . . ,±M/2}, we find that x̂k = M/2 for k = ±1 11

and x̂k = 0 otherwise. Similarly, ŷk = M/2 for k = ±1 and 0 otherwise. Finally, for a 12

circle of radius r centered at the origin, Pk = r2M2/2 for k = ±1 and 0 otherwise. We 13

therefore divide each term Pk by P1 to normalize the power spectrum. Since the k = 1 14

term always contributes a value of 1 to the sum, it is omitted from further consideration. 15

We incorporated two additional factors in the spectral characterization of invasion 16

based on means and parametric derivatives estimated at the midpoint of each interval: 17

x̄j′ ≡ (xj′+1/2 + xj′−1/2)/2, (3)

ȳj′ ≡ (yj′+1/2 + yj′−1/2)/2, (4)

ẋj′ ≡ (xj′+1/2 − xj′−1/2)/(2π/M), (5)

ẏj′ ≡ (yj′+1/2 − yj′−1/2)/(2π/M), (6)

with j′ ∈ {1/2, 3/2, . . . ,M − 1/2}. The mappings x̄ and ȳ smooth artifacts in the 18

boundary due to pixelation. A zigzag or staircase motif with (x, y) coordinates 19

(0, 0), (1, 0), (1, 1) (2, 1), for example, is mapped to the line ȳ = x̄− 1/2. 20

The transform of x̄ is 21

ˆ̄xk =

M−1/2∑
j′=1/2

e−2πij′k/M x̄j′

= (1/2)

M−1/2∑
j′=1/2

e−2πij′k/Mxj′+1/2 + (1/2)

M−1/2∑
j′=1/2

e−2πij′k/Mxj′−1/2

= (eπik/M/2)

M∑
j=1

e−2πijk/Mxj + (e−πik/M/2)

M−1∑
j=0

e−2πijk/Mxj

= cos(πk/M)x̂k, (7)

the cosine low-pass filter. We have used the periodic property that e2πijk/Mxj is 22

identical for j = 0 and j = M . Using this filter, Pk → cos2(πk/M)Pk, which smoothly 23

switches the power to 0 as the frequency approaches its largest magnitude, |k| = M/2. 24
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The mappings ẋ and ẏ are the local tangents to the parametric curve, normalized by 25

the constant distance 2π/M between adjacent interpolation points. Derivatives of 26

parametric curves are related to curvature, which is constant for a non-invasive round 27

shape and varies over the boundary for an invasive structure. With a similar approach, 28

the transform of ẋ is 29

ˆ̇xk = (M/2π)(eπik/M − e−πik/M )

= (iM/π) sin(πk/M)x̂k. (8)

We therefore introduce the weight (M/π)2 sin2(πk/M). For low frequencies, 30

sin(πk/M) ≈ πk/M , and ˆ̇xk → ikx̂k, the analogous result for continuous coordinates. 31

In this limit, the weighting factor is k2. 32

We combined these transforms and the normalization by the power of the first mode 33

to arrive at a weighted spectral power, w, defined as 34

w ≡
M/2∑
k=2

(M/π)2 sin2(πk/M) cos2(πk/M)Pk/P1. (9)

For small values of k, and defining the spacing 2π/M as λ, the leading terms of the 35

weighting and filtering factors are 36

λ−2 sin2(λk) ≈ λ−2[λk − λ3k3/6]2

= k2[1− λ2k2/6]2

≈ k2e−(2/3)λ2k2 , (10)

a weight of k2 and a Gaussian low-pass filter over a width on the order of the spacing 37

2π/M between interpolation points. 38

2 Bootstrapped Bayesian model selection 39

The normal mixture models are 40

M0 : Pr(D|µ0, σ
2
0) =

T∏
t=1

Nt∏
i=1

(2πσ2
0)−1/2 exp[−(yit − µ0)2/2σ2

0 ]; (11)

M1 : Pr(D|{µt}, σ2
W ) =

T∏
t=1

Nt∏
i=1

(2πσ2
W )−1/2 exp[−(yit − µt)2/2σ2

W ]; (12)

M2 : Pr(D|{µt}, {σ2
t }) =

T∏
t=1

Nt∏
i=1

(2πσ2
t )−1/2 exp[−(yit − µt)2/2σ2

t ]. (13)
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The maximum likelihood parameters for these normal mixture models are 41

µ̃0 = N−1
T∑
t=1

Nt∑
i=1

yti, (14)

µ̃t = N−1
t

Nt∑
i=1

yti, (15)

σ̃2
0 = N−1

T∑
t=1

Nt∑
i=1

(yti − µ̃0)2, (16)

σ̃2
W = N−1

T∑
t=1

Nt∑
i=1

(yti − µ̃t)2, (17)

σ̃2
t = N−1

t

Nt∑
i=1

(yti − µ̃t)2. (18)

The resulting model scores are 42

S0 = −(N/2) ln(2πσ̃2
0)−N/2− lnN, (19)

S1 = −(N/2) ln(2πσ̃2
W )−N/2− (1/2) lnN − (1/2)

T∑
t=1

lnNt, (20)

S2 =

T∑
t=1

−(Nt/2) ln(2πσ̃2
t )−Nt/2− lnNt. (21)

For S0, all N observations contribute to the two parameters µ0 and σ̃2
0 . For S1, all N 43

observations contribute to estimating σ̃2
W , and Nt observations contribute to each 44

estimated µ̃t. For S2, Nt observations contribute to each µ̃t and σ̃2
t . For tumors with a 45

single organoid, we used the shared variance estimate rather than the within-tumor 46

estimate. 47

3 Variance components model 48

The variance components model considers hypotheses H0 and H1 equivalent to models 49

M0 and M1: 50

H0 : yti = µ0 + εti, εti ∼ Norm(0, σ2
0); (22)

H1 : yti = µt + εti, εti ∼ Norm(0, σ2
W ). (23)

Unbiased estimates of means are 51

µ̂0 = (1/N)

T∑
t=1

Nt∑
i=1

yti, (24)

µ̂t = (1/Nt)

Nt∑
i=1

yti. (25)

The notation µ̂ rather than µ̃ indicates unbiased estimates rather than maximum 52

likelihood estimates. For means these estimates are identical, but for variances they are 53

different. The sums of squares Σ0 for the total population, ΣM for the modeled 54
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between-tumor effects, Σt for individual tumors, and ΣW for within-tumor are 55

Σ0 =

T∑
t=1

NT∑
i=1

(yti − µ̂0)2, (26)

ΣM =

T∑
t=1

Nt(µ̂t − µ̂0)2, (27)

Σt =

Nt∑
i=1

(yti − µ̂t)2, (28)

ΣW =

T∑
t=1

Σt, (29)

with ΣM + ΣW = Σ0. The unbiased estimates of variance for H0 and H1, and the 56

variance σ2
M from the modeled between-tumor effects, are 57

σ̂2
0 = Σ0/(N − 1), (30)

σ̂2
W = ΣW /(N −K), (31)

σ̂2
M = ΣM/(T − 1). (32)

The ANOVA test statistic, Q1, is 58

Q1 = σ̂2
M/σ̂

2
W . (33)

Under the null hypothesis of equal means, µ1 = µ2 = . . . = µT , Q1 is a random variable 59

following an F -distribution, 60

Q1 ∼ FT−1,N−K . (34)

If the null hypothesis is rejected, then the invasiveness of an organoid may be 61

described as a random variable y composed of a between-tumor effect εB and a 62

within-tumor effect εW , with 63

y = εB + εW , (35)

εB ∼ Norm(µ0, σ
2
B), (36)

εW ∼ Norm(0, σ2
W ), (37)

y ∼ Norm(µ0, σ
2
B + σ2

W ), (38)

σ2
0 = σ2

B + σ2
W . (39)

The unbiased estimator σ̂2
B is 64

σ̂2
B = σ̂2

0 − σ̂2
W

=
ΣM + ΣW
N − 1

− ΣW
N − T

=
1

N − 1

[
ΣM −

T − 1

N − T
ΣW

]
=

1

N − 1

[
ΣM − (T − 1)σ̂2

W

]
. (40)

Of the total variance, σ̂2
B is estimated to arise from between-tumor heterogeneity, and 65

σ̂2
W from within-tumor heterogeneity. 66
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Power analysis 67

The mixed effect model is 68

yti = µt + βxti + εti, εti ∼ Norm(0, σ2
ε ). (41)

Tumor means and organoid deviations from the mean are 69

ȳt = N−1
t

Nt∑
i=1

yti, (42)

x̄t = N−1
t

Nt∑
i=1

xti, (43)

δyti = yti − ȳt, (44)

δxti = xti − x̄t. (45)

These transformations define two models, a between-tumor model for the means and a 70

within-tumor model for the deviations: 71

ȳt = µt + βBx̄t + ε̄t, ε̄t ∼ Norm[0, N−1
t σ2

ε ]; (46)

δyti = βW δxti + δεti, δεti ∼ Norm[0, (1−N−1
t )σ2

ε ]. (47)

Here we have represented the parameter β from the mixed effects model as two separate 72

parameters, βB for the between-tumor test and βW for the within-tumor tests. These 73

tests are conducted separately as follows. 74

For the between-tumor test, means and sums of squares are 75

ˆ̄y = T−1
∑
t

ȳt, (48)

Σȳȳ =

T∑
t=1

(ȳt − ˆ̄y)2, (49)

Σȳx̄ =

T∑
t=1

(ȳt − ˆ̄y)(x̄− ˆ̄x), (50)

Σx̄x̄ =

T∑
t=1

(x̄t − ˆ̄x)2, (51)

β̂B = Σȳx̄/Σx̄x̄, (52)

R̂B = Σȳx̄/
√

ΣȳȳΣx̄x̄, (53)

Q̂B = R̂B

√
(T − 1)/(1− R̂2

B). (54)

Under the null hypothesis that βB = 0, the test statistic Q̂2
B ∼ F1,T−1, which for large 76

T is distributed approximately as χ2
1. Under the alternative hypothesis, Q̂2

B is 77

distributed as a non-central χ2
1 distribution whose expected value depends on the true 78

fraction of variance explained by the between-tumor model, R2
B , 79

Q̂B ∼ Norm

(
RB

√
(T − 1)/(1−R2

B), 1

)
. (55)

Define the cumulative probability integral Φ(z) as 80

Φ(z) = (2π)−1/2

∫ z

−∞
du exp(−u2/2), (56)
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with Φ−1(α) giving the value of z with lower-tail area α. A two-tailed test of βB 6= 0 81

with type I error controlled at level α corresponds to |Q̂B | > zI , with 82

zI = Φ−1(1− α/2). (57)

Given the true value QB , the type II error rate (or false-negative rate) is Φ(zI − |QB |), 83

with corresponding quantile 84

zII = zI − |QB |. (58)

The relationship between the type I and II error rates, the true effect size RB , and the 85

population size (number of tumors T ) is summarized as 86

Q2
B = (T − 1)R2

B/(1−R2
B) = (zI − zII)2. (59)

This expression depends explicitly on the number of tumors, T . It depends implicitly on 87

the number of organoids per tumor through the factor R2
B , which is inversely 88

proportional to the variance of the estimated tumor-level invasiveness. This variance is 89

σ2
B + σ2

W /Nt. We use R2
B to represent the variance explained in the limit of large Nt, 90

and for simplicity assume that the number of organoids per tumor is the same for all 91

tumors, Nt = N/T for all t. For a particular choice of Nt, the variance explained is 92

reduced by the factor 1 + (σ2
W /Ntσ

2
B). The explicit dependence of power on T and Nt is 93

then 94

Q2
B = (T − 1)

R2
B/[1 + (σ2

W /Ntσ
2
B)]

1−R2
B/[1 + (σ2

W /Ntσ
2
B)]

(zI − zII)2, (60)

where R2
B represents the variance explained in the limit of large Nt and perfect 95

knowledge of the tumor mean invasiveness. 96

The within-tumor test follows a similar pattern. The sums of squares and estimates 97

are 98

Σδyδy =

T∑
t=1

Nt∑
i=1

δy2
ti, (61)

Σδyδx =

T∑
t=1

Nt∑
i=1

δytiδxti, (62)

Σδxδx =

T∑
t=1

Nt∑
i=1

δx2
ti, (63)

β̂W = Σδyδx/Σδxδx, (64)

R̂W = Σδyδx/
√

ΣδyδyΣδxδx, (65)

Q̂W = R̂W

√
(N − T − 1)/(1− R̂2

W ). (66)

In this case, Q̂2
W ∼ F1,N−T−1. The relationship between error rates, effect size, and 99

population size is 100

Q2
W = (N − T − 1)R2

W /(1−R2
W ) = (zI − zII)2. (67)
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