
S1 A guided example

Let us consider an undirected decomposable graph G, represented in (Figure S1), and a random
vector (X1, ..., X6)T with a multivariate normal distribution N6(µ,⌃), where µ 2 R6 is arbitrary,
and ⌃�1 obeys the conditional independence relations encoded in G, i.e. ⌃�1 2 S+(G), where
S+(G) is the set of symmetric positive definite matrices with zeros corresponding to the missing
edges of G. Recall that two normal random variables are conditionally independent when their
partial correlation coe�cient – or equivalently, the associated element of ⌃�1 – is zero. We can
think of X1, . . . , X6 as the expression level of a group of six genes, and of G as the dependency
structure among these in a given pathway.

Let us now consider a perturbation of this system, caused, for instance, by epigenetic changes,
by mutations or gene silencing. Let us assume that this perturbation a↵ects X3 and X4, while
the remaining variables – X1, X2, X5, X6 – merely respond to the perturbation of the signal.
More specifically, compared to the control condition, the mean of X3 decreases by 70%, and the
pairwise correlation between X3 and X4 switches sign. In other words, the intervention influences
the mechanism underlying the joint distribution by acting on these two variables, but leaves the
conditional distribution of the remaining variables unaltered (Figure S2c). Such a perturbation
will impact all marginal distributions, both the mean and the variance matrix, as illustrated
in (Figure S2b) and (Figure S2a), and thus, if we employ any standard approach for detecting
di↵erential expression, we would conclude that the condition under study a↵ects all considered
genes. Although correct, this point of view fails to identify the special role of genes X3 and X4,
which are the source of the di↵erence between the two conditions. The notion of the source set
formalizes this idea. If V is the set of genes under study, and X

(1)
V

and X
(2)
V

are the expression
levels of these genes in the two conditions under study, we call the set D ✓ V the source set, if:

1. the distribution of X(1)
D

di↵ers from that of X(2)
D

;

2. the conditional distributions X(1)
D̄

|X(1)
D

and X
(2)
D̄

|X(2)
D

coincide, where D̄ = V \D.

We aim to estimate the source set from data.

Our approach starts by considering the global hypothesis of equality of the two distributions

H : ⌃(1) = ⌃(2) and µ(1) = µ(2),

Figure S1: Decomposable graph G consisting of six nodes (|V |) and three cliques (k).
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(a) Mean (b) Correlation

(c) Partial correlation

Figure S2: Mean (a), correlation (b) and partial correlation (c) parameters in the control and the
intervention condition. Parameters directly a↵ected by the intervention are highlighted (red). Dashed
line y = x added for reference.
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Element A �(A) df p-value
C1 {1, 2, 3, 4} 231.95 14 1.5⇥ 10�41

C2 {3, 4, 5} 225.58 9 1.4⇥ 10�43

C3 {3, 5, 6} 48.93 9 1.7⇥ 10�7

S2 {3, 4} 224.71 5 1.4⇥ 10�46

S3 {3, 5} 43.74 5 2.6⇥ 10�8

Table S1: Test of equality of distribution of cliques and separators in G. Significant p-values are
highlighted.

where µ(i), ⌃(i), i = 1, 2, are parameters of the control and intervention distribution, respectively.
We then consider a decomposition of the global hypothesis induced by the graphical structure
of the model. The graph G consists of three cliques: C1 = {1, 2, 3, 4}, C2 = {3, 4, 5}, and C3 =
{3, 5, 6}. The associated sequence of separators is S2 = {3, 4}, S3 = {3, 5}. The perturbation
that we have performed a↵ects all these components. As a numerical confirmation, we generated
a random sample of size 100 for each condition (i.e., before and after the intervention on X3

and X4) and tested equality of the distributions of all cliques and separators (see Table S1). As
shown in the table, all grains of the graphical decomposition are marginally statistically di↵erent.
We therefore exploit multiplicity of the graphical description to try to recover the true source of
dysregulation.

There are three possible orderings of these grains satisfying the running intersection property.
More formally, let C

i,1, ..., Ci,3 denote the i-th decomposition, i = 1, . . . , 3, having C
i,1 = C

i

as
root clique, and S

i,1, ..., Si,3 be a corresponding sequence of separators, where S
i,1 = ?. This

gives rise to the following decompositions:

• Ordering 1 (root C1):
C1,1 = C1, C1,2 = C2, C1,3 = C3;
S1,1 = ?, S1,2 = S2, S1,3 = S3;

• Ordering 2 (root C2):
C2,1 = C2, C2,2 = C1, C2,3 = C3;
S2,1 = ?, S2,2 = S2, S2,3 = S3;

• Ordering 3 (root C3):
C3,1 = C3, C3,2 = C2, C3,3 = C1;
S3,1 = ?, S3,2 = S3, S3,3 = S2;

Correspondingly, the log likelihood ratio (LLR) criterion �(V ) for testing H can be decom-
posed as:

�(V ) = �(C1) + [�(C2)� �(S2)] + [�(C3)� �(S3)]

�(V ) = �(C2) + [�(C1)� �(S2)] + [�(C3)� �(S3)]

�(V ) = �(C3) + [�(C2)� �(S3)] + [�(C1)� �(S2)]

where �(A) denotes the log likelihood ratio criterion associated to the marginal model induced
by A. The key observation is that the components in squared brackets on the right-hand sides
correspond to tests of equality of conditional distributions. For example, in the first decomposi-
tion [�(C2) � �(S2)] focuses on the distribution of X5 given X3 and X4, while [�(C3) � �(S3)],
focuses on the distribution of X6 given X3 and X5. Furthermore, the three components have a
limiting chi-squared distribution and are jointly (asymptotically) independent.
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Root clique Component �(C
i,j

)� �(S
i,j

) df p-value D̂
G,i

C1

C1 231.94 14 1.5⇥ 10�41

{ C1 }C2|S2 0.87 4 0.93
C3|S3 5.19 4 0.27

C2

C2 225.58 9 1.4⇥ 10�43

{ C2 }C1|S2 7.23 9 0.61
C3|S3 5.19 4 0.27

C3

C3 48.93 9 1.7⇥ 10�7

{ C3 [ C2 }C2|S3 181.84 4 3.0⇥ 10�38

C1|S2 7.23 9 0.61

Table S2: Marginal and conditional tests for the k = 3 decompositions of G. Significant p-values are
highlighted.

Let us look at the interpretation of the individual tests. The first decomposition allows us
to fill in the first three rows of the (Table S2). The first test is significant at level ↵ = 0.05,
while the other two are not, although C2 and C3 are individually marginally significant (Table
S1). This implies that di↵erences in marginal distribution of C2 and C3 are fully explained by
the changes in the marginal distribution of the first clique.

We now combine results of all three decompositions to estimate the source set. Distinct
decompositions of the global null hypothesis give rise to a collection {H

i,j

, i, j = 1, . . . , 3} of
local hypotheses of equality of the conditional distributions of X

Ci,j\Si,j
|X

Si,j , i, j = 1, . . . , 3,
(Table S2). Then if �

i,j

2 {0, 1} denotes the outcome of the test of H
i,j

, with �
i,j

= 1 when H
i,j

is rejected, the estimate of the source set is given by

D̂
G

=
k\

i=1

D̂
G,i

where D
G,i

=
S

{j:d⇤
i,j=1} Ci,j

.

In our example, if we set ↵ = 0.05, we obtain �1 = {1, 0, 0}, �2 = {1, 0, 0}, and �3 = {1, 1, 0},
which leads to D̂

G

= {3, 4}, which is indeed the true minimal source set.
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