Picault et al., 2019 S4 Text (metapop_movements. py)

"""Definition of specific code add-on for the EMULSION model to handle
commercial movements in the metapopulation.

nimnn

from pathlib import Path
import csv

import dateutil.parser as dup
import numpy as np

from emulsion.agent.managers import MetapopProcessManager

DATA_FILE = 'moves.csv'

T

#
CLASS Metapopulation (LEVEL 'metapop')

.

#

class Metapopulation(MetapopProcessManager) :
ninn

level of the metapop.

nnn

Level initialization. This method is called automatically by
EMULSION simulation engine after the application of initial
conditions.

def initialize_level(self, **others):
"""Initialize an instance of Metapopulation.
Additional initialization parameters can be introduced here if needed.
mimn
read a CSV data file for mowves:
date of movement, source pop, destination pop, age group, quantity

and restructure it according to origin_date and delta_t:
{step: {source_id: [(dest_id, age_group, qty), ...J,
o F
.7
origin = self.model.origin_date
step_duration = self.model.step_duration
moves = {}
with open(Path(self .model.input_dir, DATA_FILE)) as csvfile:
read the CSV file
csvreader = csv.DictReader(csvfile, delimiter=',")
for row in csvreader:
day = dup.parse(row['date'])
if day < origin:
ignore dates before origin_date
continue
convert dates into simulation steps
step = (day - origin) // step_duration
group information by step and source pop
if step not in moves:

Picault et al., 2019 S4 Text (metapop_movements. py)

moves [step] = {}
src, dest, qty = int(row['source']), int(row['dest']), int(row['qty'l)
if src not in moves[step]:
moves [step] [src] = []
moves [step] [src] .append([dest, row['age']l, qtyl)
self .moves = moves

def exchange_individuals(self):
"""Check 1f movements have to be performed at current time step. If
so, identify source and target populations, select individuals
corresponding to the data, and proceed to the movement.

mnimnn

if self.statevars.step in self.moves:
pops = self.get_populations()
for source in self.moves[self.statevars.step]:
for dest, age, qty in self.moves[self.statevars.step] [source]:
neither source/dest in simulated pops
if (source not in pops) and (dest not in pops):
ignoring movement from source to dest (outside the metapopulation)
continue
source not in simulated pops: create individual from prototype
if source not in pops:
movement to dest coming from outside the metapopulation
retrieve prototype definition from the model
prototype = self.model.get_prototype(name='imported_movement',
level='individuals')
change age group to comply with movement
prototypel'age_group'] = self.get_model_value(age)
individuals = [pops[dest] .new_atom(custom_prototype=prototype)
for _ in range(qty)]
else:
find convenient individuals
candidates = pops[source].select_atoms('age_group', age,
process='aging')
try to move the appropriate quantity
nb = min(len(candidates), qty)
if nb > O:
individuals = np.random.choice(candidates, nb, replace=False)
pops [source] .remove_atoms(individuals)
else:
individuals = []
if dest not in pops:
pass
movement from dest going outside the metapopulation
else:
pops [dest] .add_atoms (individuals)

