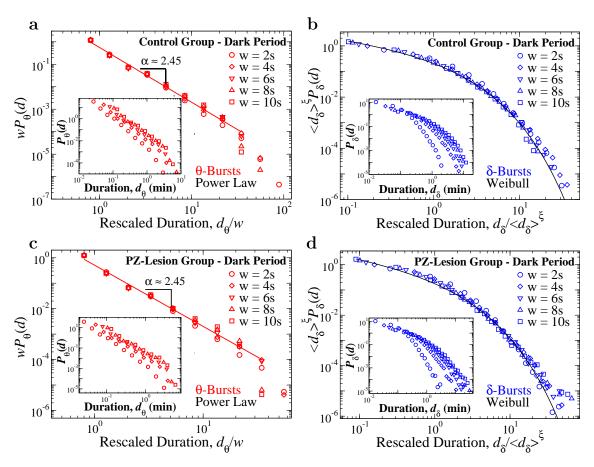
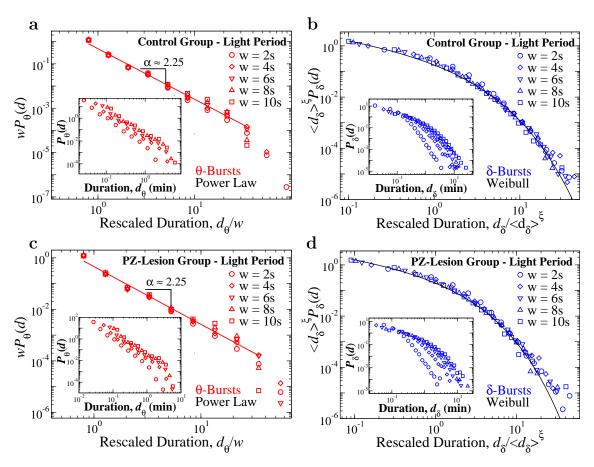


Fig. A Distributions of surrogate θ - and δ -burst durations markedly deviates from the original distributions discussed in the main text (Fig. 2). Procedure for generating surrogate θ - and δ -burst durations is explained in the Materials and methods, Data analysis. (a) Probability density of original θ -burst durations for control (open circles) and PZ-lesioned rats (full triangles) over the 24h period (pooled data) are compared with the probability density of surrogate θ -burst durations (magenta dashed line). In contrast to the original θ -burst durations, the probability density of surrogates does not follow a power-law behavior, and is close to an exponential distribution. (b) Probability density of original δ -burst durations for control (open circles) and PZ-lesioned rats (full triangles) over 24 h period (pooled data) are compared with the probability density of surrogate δ -burst durations (magenta dashed line). The probability density of surrogate δ -burst durations (magenta dashed line). The probability density of surrogate δ -burst durations (magenta dashed line). The probability density of surrogate δ -burst durations (magenta dashed line). The probability density of surrogate δ -burst durations (magenta dashed line). The probability density of surrogate δ -burst durations (magenta dashed line). The probability density of surrogate δ -burst durations (magenta dashed line).


Fiq. BDistribution of θ - and δ -burst durations in the dark period are independent of the specific threshold Th used to identify bursts and can be described by unique scaling functions. Distribution of θ - and δ -burst durations in the dark period for different threshold values Th on the ratio $R_{\theta\delta}$ and window size w = 5 s. (a) Distribution of θ -burst durations for control rats over a 12 h dark period (pooled data). Distributions evaluated using different Th values consistently follow the same power-law behaviour (red tick line), with an exponential cutoff that is controlled by Th. Inset: the data collapse onto a universal function f_{θ} when we plot $P(d)d^{\alpha}$ versus $Th^{\epsilon}d$, with $\alpha = 2.45$ and $\epsilon = 0.8$. (b) Rescaled distribution of δ -burst durations for control rats over a 12 h dark period (pooled data). Distributions are rescaled by $\langle d_{\delta} \rangle^{\eta}$, with $\langle d_{\delta} \rangle$ mean δ -burst duration and $\eta = 1.2$. After rescaling, distributions collapse onto a single function that is well fitted by a Weibull distribution $f(d; \lambda, \beta)$ (black thick line), with $\lambda = 0.60$ and $\beta = 0.54$. Inset: distributions P_{δ} for different thresholds Th (not rescaled). (c) Distribution of θ -burst durations for PZ-lesioned rats over a 12h period (pooled data). Distributions evaluated using different Th values consistently follow the same power-law behavior (red tick line), with a cutoff that is controlled by Th. Inset: Data collapse onto a single function by plotting $P(d)d^{\alpha}$ versus $Th^{\epsilon}d$ with $\alpha = 2.45$ and $\epsilon = 0.8.$ (d) Rescaled distribution of δ -burst durations for PZ-lesioned rats over a 12h dark period (pooled data). Distributions are rescaled by $\langle d_{\delta} \rangle^{\eta}$, with $\langle d_{\delta} \rangle$ mean δ -burst

duration and $\eta = 1.2$. After rescaling, the distributions collapse onto a single function that is well fitted by a Weibull distribution $f(d; \lambda, \beta)$ (black thick line), with $\beta = 0.50$ and $\lambda = 0.37$. Inset: Distributions P_{δ} for different thresholds (not rescaled).


Distribution of θ - and δ -burst durations in the light period are Fiq. Cindependent of the specific threshold Th used to identify bursts and can be described by scaling functions. Distribution of θ - and δ -burst durations in the light period for different threshold values Th on the ratio $R_{\theta\delta}$ and window size w = 5 s. (a) Distribution of θ -burst durations for control rats over a 12 h light period (pooled data). Distributions evaluated using different Th values consistently follow the same power-law behaviour (red tick line), with a cutoff that is controlled by Th. Inset: the data collapse onto a single function when we plot $P(d)d^{\alpha}$ versus $Th^{\epsilon}d$, with $\alpha = 2.25$ and $\epsilon = 0.8$. (b) Rescaled distribution of δ -burst durations for control rats over a 12 h light period (pooled data). Distributions are rescaled by $\langle d_{\delta} \rangle^{\eta}$, with $\langle d_{\delta} \rangle$ mean δ -burst duration and $\eta = 1.2$. After rescaling, distributions collapse onto a single function, a Weibull distribution $f(d;\lambda,\beta)$ (black thick line), with $\beta = 0.55$ and $\lambda = 0.46$. Inset: Distributions P_{δ} for different thresholds (not rescaled). (c) Distribution of θ -burst durations for PZ-lesioned rats over a 12 h period (pooled data). Distributions evaluated using different Th values consistently follow the same power-law behaviour (red tick line), with a cutoff that is controlled by Th. Inset: data collapse onto a universal function f_{θ} by plotting $P(d)d^{\alpha}$ versus $Th^{\epsilon}d$ with $\alpha = 2.25$ and $\epsilon = 0.8$. (d) Rescaled distribution of δ -burst durations for PZ-lesioned rats over a 12 h light period (pooled data). Distributions are rescaled by $\langle d_{\delta} \rangle^{\eta}$, with $\langle d_{\delta} \rangle$ mean δ -burst duration and $\eta = 1.2$. After rescaling, the distributions

collapse onto a single function, a Weibull distribution $f(d; \lambda, \beta)$ (black thick line), with $\beta = 0.56$ and $\lambda = 0.47$. Inset: Distributions P_{δ} for different thresholds (not rescaled).

Distribution of θ - and δ -burst durations in the dark period are Fiq. Dindependent of the specific window size w used to identify bursts and can be described by unique scaling functions. Distribution of θ - and δ -burst durations in dark period for different window sizes w and Th = 1 on the ratio $R_{\theta\delta}$. (a) Rescaled distribution of θ -burst durations for control rats over a 12h dark period (pooled data). Distributions are rescaled by the window size w and consistently show the same powerlaw behavior with $\alpha = 2.45$ (red tick line), as proven by the data collapse. Inset: Distributions P_{θ} for different window sizes (not rescaled). (b) Rescaled distribution of δ -burst durations for control rats over a 12 h dark period (pooled data). Distributions are rescaled by $\langle d_{\delta} \rangle^{\xi}$, with $\langle d_{\delta} \rangle$ mean δ -burst duration and $\xi = 1.2$, and collapse onto a single function that is well described by a Weibull distribution $f(d; \lambda, \beta)$ (black thick line), with $\beta = 0.59$ and $\lambda = 0.57$. Inset: Distributions P_{δ} for different window sizes (not rescaled). (c) Rescaled distribution of θ -burst durations for PZ-lesioned rats over a 12 h dark period (pooled data). Distributions are rescaled by the window size w and consistently show the same power-law behavior with $\alpha = 2.45$ (red tick line), as proven by the data collapse. Inset: Distributions P_{θ} for different window sizes (not rescaled). (d) Rescaled distribution of δ -burst durations for PZ-lesioned rats over a 12h dark period (pooled data). Distributions are rescaled by $\langle d_{\delta} \rangle^{\xi}$, with $\langle d_{\delta} \rangle$ mean δ -burst duration and $\xi = 1.2$, and collapse onto a single function that is well fitted by a Weibull distribution

 $f(d; \lambda, \beta)$ (black thick line), with $\beta = 0.54$ and $\lambda = 0.45$. Inset: Distributions P_{δ} for different window sizes (not rescaled).

Distribution of θ - and δ -burst durations in the light period are Fiq. Eindependent of the specific window size w used to identify bursts and can be described by unique scaling functions. Distribution of θ - and δ -burst durations in light period for different window sizes w and Th = 1 on the ratio $R_{\theta\delta}$. (a) Rescaled distribution of θ -burst durations for control rats over a 12h light period (pooled data). Distributions are rescaled by the window size w and consistently show the same powerlaw behavior with $\alpha = 2.25$ (red tick line), as proven by the data collapse. Inset: Distributions P_{θ} for different window sizes (not rescaled). (b) Rescaled distribution of δ -burst durations for control rats over a 12h light period (pooled data). Distributions are rescaled by $\langle d_{\delta} \rangle^{\xi}$, with $\langle d_{\delta} \rangle$ mean δ -burst duration and $\xi = 1.2$, and collapse onto a single function that is well described by a Weibull distribution $f(d; \lambda, \beta)$ (black thick line), with $\beta = 0.54$ and $\lambda = 0.44$. Inset: Distributions P_{δ} for different window sizes (not rescaled). (c) Rescaled distribution of θ -burst durations for PZ- lesioned rats over a 12h light period (pooled data). Distributions are rescaled by the window size wand consistently show the same power-law behavior with $\alpha = 2.25$ (red tick line), as proven by the data collapse. Inset: Distributions P_{θ} for different window sizes (not rescaled). (d) Rescaled distribution of δ -burst durations for PZ-lesioned rats over a 12 h light period (pooled data). Distributions are rescaled by $\langle d_{\delta} \rangle^{\xi}$, with $\langle d_{\delta} \rangle$ mean δ -burst duration and $\xi = 1.2$, and collapse onto a single function that is well described by a

Weibull distribution $f(d; \lambda, \beta)$ (black thick line), with $\beta = 0.56$ and $\lambda = 0.48$. Inset: Distributions P_{δ} for different window sizes (not rescaled).

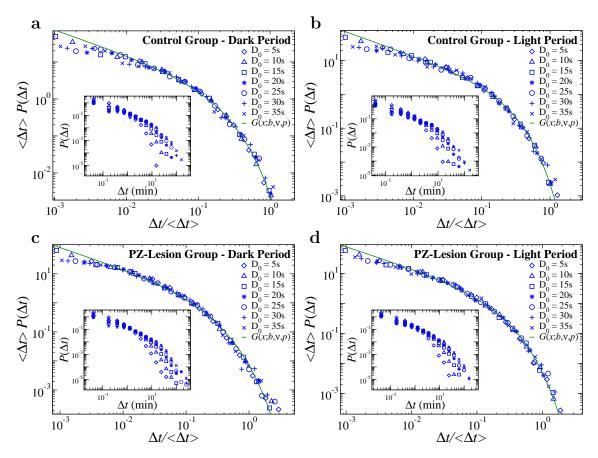


Fig. F Distribution of quiet times between consecutive θ -bursts for different thresholds D_0 on θ -burst durations in dark and light periods. When rescaled by $\langle \Delta t \rangle$ (main panels), distributions collapse onto a unique function that is well fitted by a generalized Gamma function $G(x; b, \nu, p)$ (green tick lines). (a) Distributions of quiet times for different thresholds D_0 on θ -burst durations in 12h dark period for control rats. Generalized gamma fit (green tick line): b = 1, $\nu = 0.58$, and p = 0.8. (b) Distributions of quiet times for different thresholds D_0 on θ -burst durations in 12 h light period for control rats. Generalized gamma fit (green tick line): b = 1, $\nu = 0.47$, and p = 0.77. (c) Distributions of quiet times for different thresholds D_0 on θ -burst durations in 12 h dark period for PZ-lesioned rats. Generalized gamma (green tick line): b = 0.95, $\nu = 0.47$, and p = 0.72. (d) Distributions of quiet times for different thresholds D_0 on θ -burst durations in 12 h light period for PZ-lesioned rats. Generalized gamma fit (green tick line): b = 0.93.

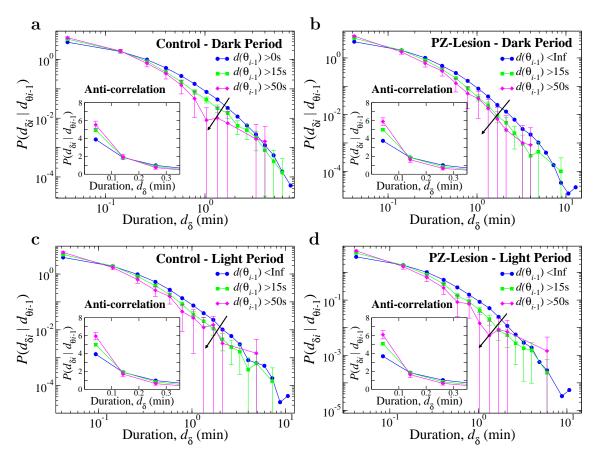


Fig. G Distributions of conditional probabilities for δ -burst durations. (a) Distribution of durations d_{δ_i} given that the duration of the preceding θ -burst is larger than a given threshold d^* ($d^* = 15$ s and $d^* = 50$ s) for control rats in dark periods. (b) Distribution of durations d_{δ_i} given that the duration of the preceding θ -burst is larger than a given threshold, $d^* = 15$ s and $d^* = 50$ s, for PZ-lesioned rats in dark periods. Durations are calculated using a window w = 5 s and a threshold Th = 1 on the ratio $R_{\theta/\delta}$. (c) Distribution of durations d_{δ_i} given that the duration of the preceding θ -burst is larger than a given threshold d^* ($d^* = 15$ s and $d^* = 50$ s) for control rats in light periods. (d) Distribution of durations d_{δ_i} given that the duration of the preceding θ burst is larger than a given threshold d^* ($d^* = 15$ s and $d^* = 50$ s) for PZ-lesioned rats in light periods. Durations are calculated using a window w = 5 s and a threshold Th = 1on the ratio $R_{\theta\delta}$. Inset in each panel shows details of conditional probability distribution for short $d_{\delta_i} < 0.4$ min.