Tumor-specific Causal Inference model
We designed the TCI algorithm to infer the functional-impact relationships between SGAs and DEGs for a given tumor using a bipartite causal Bayesian network (CBN) in which causal edges are only allowed to point from SGAs to DEGs. We assumed that each DEG is likely regulated by one aberrant pathway in an individual tumor and that such a pathway is likely perturbed by a single SGA due to the well-known mutual exclusivity among SGAs perturbing a common pathway (32-34). 
Let T = {T1, T2, …, Tt, …, TN} denote the tumor set that contains N tumor samples, where t indexes over the tumors included in the tumor set. Let SGA_SETt = {A1, A2, …, Ah, …, Am} denote a subset of m genes with genome alterations in tumor t (i.e., the SGAs), where h indexes over the variables in SGA_SETt. Let DEG_SETt = {E1, E2, …, Ei, …, En} denote n genes that are differentially expressed in tumor t, where i indexes over the variables in DEG_SETt (i.e., the DEGs). We further included a variable A0 to collectively represent factors other than SGAs (e.g., tumor microenvironment or hypoxia) that may cause differential gene expression. 
For a given tumor t, a model M is a bipartite CBN in which, for each variable Ei in DEG_SETt, there is exactly one arc into Ei from a variable in SGA_SETt. In model M, a given Ah can have zero, one, or more arcs emanating from it to the variables in DEG_SETt. Within the tumor t, TCI searches for a model M that best explains the data by assigning the Ah in SGA_SETt that is the most probable cause for each Ei in DEG_SETt . Pseudocode for the TCI algorithm is given below. Also shown is pseudocode for the algorithm FindGlobalDrivers, which produces results used by TCI, and thus must be called prior to calling TCI.
FindGlobalDrivers(D: dataset): set;
let SGA_SET be the set of all SEGs across all tumors
let DEG_SET be the set of all DEGs across all tumors
let G be an array of global drivers, one for each DEG variable
//a global driver of a DEG is the single best SGA that predicts that DEG over all tumors
for Ei ∊ DEG_SET do
bestScore := 0;
for Ah ∊ SGA_SET do
	score := eglobal(h, i);  //see Equation 5 below 
	if score > bestScore then 
		bestSGA := Ah;
		bestScore := score;
end for;
G(Ei).bestGlobalSGA := bestSGA;
G(Ei).bestGlobalScore := bestScore;
end for;
return G;

TCI(t: tumor; D: dataset; G: array of global drivers): CBN;
let M be a CBN;
initialize M to contain no arcs;
SGA_SETt := SGAs in tumor t;
DEG_SETt := DEGs in tumor t;
for Ei ∊  DEG_SETt do 
bestScore := 0;
for Ah ∊ SGA_SETt do
	score :=elocal(h, i);    //see Equation 8 below
	if score > bestScore then
		bestSGA := Ah;
		bestScore := score; 
end for;
place the arc bestSGA  Ei into M;
end for;
return M;
      
TCI employs a Bayesian framework to infer causal inference. In a tumor t, TCI scores an arc Ah  Ei between SGA Ah and DEG Ei based on the posterior probability of the arc, which can be derived as follows using Bayes rule:
,	                (1) 
where  is the data about variables Ah and Ei;  is the marginal likelihood of the data given that Ah is modeled as the cause of Ei; and is the prior probability that Ah is the cause of Ei. Since the posterior probability shown on the left side of Equation 1 is proportional to the numerator on the right side, TCI simply uses the numerator as the arc score. In the text below, we discuss how to derive the numerator in both a global and tumor-specific manner. 
The tumor-specific nature of TCI is reflected in the following points: 1) Each tumor has a unique SGA_SETt and the DEG_SETt; thus, the TCI-inferred CBN structure M is tumor-specific. 2) The prior probability of a model  [which is based on the component priors ] is tumor-specific. 3) Calculation of the marginal likelihood of an arc consists of two components: one component is computed using the data from the tumors in which Ah =1, (i.e., “tumors like me”), and the other component is derived using a global model. As such, the posterior probability of the edge  is specific to a given tumor, and the same edge  may have different posterior probabilities in different tumors depending on the composition of SGA_SETt.

Tumor-specific model priors. While it would be ideal to define the prior probability for each edge  using prior knowledge, we usually have very limited information about it. Despite of the lack of specific prior knowledge, we use the prior probability to incorporate the following general knowledge (on which frequency-oriented approaches are based) regarding the probability that a gene is a driver: the more frequently a gene is perturbed in a cancer cohort, the more likely it is a driver in an individual tumor. Furthermore, we also consider the tumor-specific context of the SGAs in each tumor. 
To define an informative prior that can represent the biological foundations of different genome alterations in the tumor cells can help us effectively correct model bias and thus make accurate predictions (29,35). Therefore, we need to specify the model prior  for each SGA Ah in each tumor t by comparing its alteration frequency in the tumor cohort against normal cells. In our paper, we used additional genomic information for both SM and SCNA to derive the prior probability of each edge  using existing prior knowledge. We calculated and collected the following SGA information for each gene h: (1) the MutSigCV p value for h among the tumors in D from TCGA, and (2) the copy number amplification and deletion of h in a normal population without cancer from 1000 genome project (http://www.internationalgenome.org/) (64,65). Such information can be applied to help account for mutation and copy number alterations that are due to differences in gene lengths and chromosome locations which doesn’t depend on SGA frequency.
For a tumor t and an arbitrary DEG Ei, we defined the prior probability of Ah being a parent of Ei using a multinomial distribution with a parameter vector , where . Here, θ0 is a user-defined parameter representing the prior belief that the non-SGA factor A0 being the cause of Ei, and  represents the prior probability of Ah being the cause of Ei. In this study, we set  = 0.1. We assumed that where  is a tumor-specific Dirichlet parameter vector governing the distribution of . For a tumor t, we calculated the prior probability  as follows:
				(2)
where h’ indexes over the m variables in SGA_SETt;  is a Dirichlet parameter and  is MutSigCV p value for Ah.

Marginal likelihood function P(D|M). In TCI, the overall marginal likelihood of the data D given model M is a product of the marginal likelihood of each arc` in M. The term  is the marginal likelihood function of M, which can be derived by marginalizing out model parameters  as follows:

[bookmark: _GoBack]where  represents the parameters (probabilities) associated with causal Bayesian network structure M. Since our data (A and E) are discrete variables, the parameters and their prior distributions are multinomial and Dirichlet respectively. In addition, TCI uses the Bayesian Dirichlet equivalent uniform (BDeu)(66) scoring measure to derive the marginal likelihood for each arc in M as a function that is expressed in terms of the products and ratios of gamma functions. Taken together, we have the following:
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where j indexes over the states of the cause of Ei in M (i.e., some variable Ah); qi is the number of possible values of Ah (in our case, it is 2, because Ah is modeled as a binary variable); k is variable which indexes over the states of Ei; ri denotes the total possible states of Ei (in our case, it is set to 2); Nijk is the number of tumors in dataset D in which node Ei has value k and its cause Ah in M has the value denoted by j; αijk is a parameter in a Dirichlet distribution that represents prior belief about P(Ei | cause(Ei)); Γ is the gamma function; ; and . 
Let  represent the function that calculates the Bayesian score of the edge  in tumor t (i.e., the numerator of the Eq (1)) over all the data. Then,  can be defined as follows: 
 .	                      (5)
where  can be calculated using Equation (2).
The tumor-specific calculation of the marginal likelihood uses the data that are most relevant to the given tumor (aka “tumors like me”) to infer if the hypothesis of a candidate causal edge  is supported among these tumors. To do so, we modified the Bayesian scoring function shown in Equation 5 by dividing the training data D into a tumor-specific subset (the subset of tumors with Ah = 1 for the current tumor t) and the remaining data (the subset of tumors with Ah = 0). Let  denote the subset of tumors in which Ah=1 and  denote the subset of tumors in which Ah=0, such that . Let G(i) represent the SGA with maximal Bayesian score for Ei derived from Equation 5 at the whole cohort level (referred to as “global driver”) and let  denote the prior probability that G(i) is the cause of Ei in tumor t. 
We can calculate the  and  for tumors with Ah=1 and those with Ah=0, respectively, as follows:
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where  is the number of tumors in  in which Ei has value k and Ah = 1;  is the number of tumors in  that Ei has value k; and AG(i) has the value indexed by j. Finally, the posterior probability of a causal edge  can be calculated with the following equation:
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