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1 | PHENOTYPIC CHARACTERIZATIONOF E. COLI STRAINS
Characterization of adaptive laboratory evolution (ALE) clones from LaCroix et al. (2015) was performed using clonal
isolate stocks which were inoculated into overnight cultures, and then passaged twice in late exponential phase after
approximately 5–6 generations in order to characterize cells which were physiologically adapted to the growth con-
ditions. The media used was identical to the M9 minimal media with 4 g/L glucose as described (LaCroix et al., 2015)
and were fully oxygenated in flasks with approximately 15 mL working volume. Optical density measurements at a
600 nmwavelength were taken periodically with a spectrophotometer (Thermo Fisher Scientific, Waltham, MA) until
stationary phase was reached, and were correlated to dry weight. At each sample point, the cell culture was filtered
through a 0.22 umPVDFmembrane (MilliporeSigma, Burlington,MA), and the filtrate was collected. By-products and
substrateswerequantified in thefiltratebyhigh-performance liquid chromatographyusing a refractive-indexdetector
(Agilent Technologies, SantaClara, CA) and anAminexHPX-87H column (Bio-Rad Laboratories, Hercules, CA). Uptake
rates were calculated using the slope of a best linear fit of the concentration of an analyte over the dry cell weight,
multiplied by the growth rate over the same exponential growth region.
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2 | 13CMETABOLIC FLUXANALYSIS
Two of the ALE strains, index 7B(strain with highest growth yield) and index 10 (strain with lowest growth yield) in Ta-
ble S11 have been collected for 13Cmetabolic flux analysis (MFA). Triplicate cultures were grown on labeled glucose
M9minimalmedia (Sambrook and Russell, 2001)with trace elements (Fong et al., 2005) and sampled fromaheat block
that was maintained at 37 °C and fully aerated with tumble stir magnets. The labeled tracer consisted of 20/80 mix-
ture of 13C glucose and 1-13C glucose purchased from Cambridge Isotope Laboratories, Inc. (Tewksbury, MA). Sam-
ples were taken and extracted using a modified version of the fast Swinnex filtration approach described previously
(McCloskey et al., 2015b).

A XSELECT HSS XP 150 mm × 2.1 mm × 2.5 µm (Waters®, Milford, MA) with a Prominence UFLC XR HPLC
(Shimadzu, Columbia, MD) was used for chromatographic separation (McCloskey et al., 2015a). An AB SCIEX Qtrap
5500 mass spectrometer (AB SCIEX, Framingham, MA) operated in negative mode with was used for detection of
metabolites (McCloskey et al., 2015a). Precursor and product isotopomers of selected metabolites were calculated
frommultiple-reaction monitoring. Additional product isotopomers were calculated from enhanced product ion (EPI)
scans coupled to an information dependent acquisition (IDA) method. Details of the isotopomer calculations and ac-
quisitionmethod can be referred toMcCloskey et al. (2016a,b).

A coremodel derived from the central carbohydratemetabolism and biomass composition of iJO1366 (Orth et al.,
2014) was utilized for MFA simulations to confirm the succinate dehydrogenase knockout and confirm elimination of
flux fromsuccinate to fumarate. Acoremodel ofE. coli centralmetabolismbasedon themodel byLeighty and Antoniewicz
(2012) with slight modifications to include an alternative glucose importer and an additional reaction to include the
metabolite Phosphoribosyl pyrophosphate (prpp) was utilized forMFA simulations involving the glucose evolved end-
point strains. Substrate uptake and secretion rates calculated from triplicate cultures grown on 12C glucose M9min-
imal media were used as additional constraints. MFA simulations were conducted using MATLAB and INCA v1.3
(Young, 2014). Confidence intervals were calculated using a method similar to that described in Antoniewicz et al.
(2006) as encoded in INCA (Young, 2014). Standard deviations were calculated based off of 95% confidence intervals
as described in Antoniewicz et al. (2006).

3 | PROTEOMECONSTRAINTS IN THEME-MODEL
The specific growth rate µ is the number of replicated cell per time unit per cell. When the cell replicates, it needs to
replicate all cellular components proportionally, and this can be represented as a steady-state dilution rate qd i l ut i on of
each individual componentC (Molenaar et al., 2009).

qd i l ut i on,C = µ [C ] ,C ∈ cel l component s (1)

In Eq. 1, [C ] is the concentration of the components in the original cell.

Beginning withMichaellis-Menten kinetics defined by the equation:

qr eact i on =
kcat [E ][S ]
KM + [S ] (2)
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We can derive a bulk parameter kef f where:

kef f =
kcat [S ]
KM + [S ] (3)

qr eact i on = kef f [E ] (4)

TheME-model formulation is based on the inequality form of Eq. 4 (Lloyd et al., 2018; O’brien et al., 2013):

qr eact i on ≤ kef f ,E · [E ] = kef f ,E · qd i l ut i on,E
µ

(5)

4 | CONNECTIONBETWEENPROTEOMEALLOCATIONMODELANDME-MODEL
The proteome allocation model presented by (Basan et al., 2015) defined proteome efficiency with the symbol ε as
the proportionality coefficient relating reaction rate through a metabolic pathway, qr , to the proteome fraction, ϕ. ϕ
represents the fraction of total cell proteome dedicated to catalyzing flux through the pathway.

qr = ε · ϕE (6)
Next, they assume that the size of the entire proteome is linearly dependent on the growth rate µ with the coeffi-

cient γ. For a particular enzyme E , the dilution rate qd i l ut i on,E must provide enough enzyme to catalyze flux, thus:

ϕE ,r eact i on ≤ qd i l ut i on,E

γµ
(7)

Combining with Eq. 5, we have:

kef f ,E = εE /γ (8)
Thus, a simplemodel assigningparameters fromthecoarse-grainedproteomeallocationmodel (Basan et al., 2015)

to theME-model can be built. We call it small scaleME-model (SSME-model).

5 | SSME-MODEL PARAMETERDERIVATION
The SSME-model is derived from the course-grained proteome allocation model presented by (Basan et al., 2015)
(Fig. S1). The model contains three pathways, respiration (shown as "res"), fermentation ("fer"), and biomass synthe-
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sis pathway ("bms"). The respiration pathway generates energy (ATP) to feed the synthesis of biomass and excrete
CO2. The fermentation pathway generates energy and excrete acetate. The biomass pathway synthesizes biomass
proportionally to the growth rate µ with proportionality coefficient β .

According to Basan et al. (2015), the coupling constraint on each pathway is based on proteome allocation which
can be explained in three steps (Fig.S1):

• The entire biomass (βµ) can be separated into proteome with the coefficient α and other biomass with the coef-
ficient 1 − α (including lipids, nucleotides, and other components). This is based on the assumption that the total
fraction of proteome in the cell is unchanged; data suggests the actual variation is within 5% (Mori et al., 2016).

• The proteome is separated into the proteins for the respiration, fermentation, and biomass pathways with the
coefficientϕmax and the proteome for other pathways, 1 − ϕmax .

• The proteome is finally divided into the protein for each pathway with coefficients ϕr for respiration, ϕf for fer-
mentation, and 1 − ϕr − ϕf for biomass.

Fluxes through the respiration and fermentation pathways are notated as qE ,r and qE ,f . The total energy that is
created through these two pathwaysmust meet the energy demand for growth:

qE ,f + qE ,r = qE (µ) = σµ (9)

The flux of carbon substrate uptake is annotated as qC ,i n , and the fluxes that consuming substrate through the
respiration and fermentation pathways are qC ,f and qC ,r . The rest of the carbon substrate contributes directly to
biomass production, qC ,bms :

qC ,bms (µ) = qC ,i n − qC ,f − qC ,r = βµ (10)

The growth energy flux and biomass carbon flux could be considered as the demand reaction that their reaction
rates are:


qdemand ,ener g y = qE (µ) = σµ

qdemand ,bi omass = qC ,bms (µ) = βµ
(11)

The substrate uptake rate bound (SURB) is considered to be equivalent to themaximum value of the carbon input
flux: qC ,i n ≤ SURB . For the respiration and fermentation pathways, the rates are normalized to the carbon flux of the
two pathways. The amount of energy that is created through either respiration or fermentation is proportional to the
carbon fluxwith coefficients er and ef :


qr = qC ,r = qE ,r /er

qf = qC ,f = qE ,f /ef
(12)
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Assuming that the proteome possesses a fixed portion α (0 ≤ α ≤ 1) of the biomass content:


vdemand ,pr ot eome = α · vdemand ,bi omass (µ) = α · βµ

vdemand ,other bi omass = (1 − α) · βµ
(13)

The proteome is divided into the growth-dependent proteome µDP r o with the maximum fraction ϕmax (0 ≤
ϕmax ≤ 1) and growth-independent proteome µI P r o :


qdemand ,µDP r o = ϕmax · qdemand ,pr ot eome = ϕmax · α · βµ

qdemand ,µI P r o = (1 − ϕmax · α · βµ
(14)

The growth-dependent proteome is divided into three parts corresponding the respiration, fermentation, and
biomass pathways.

ϕf + ϕr + ϕBM = 1 (15)

Where the proteome part for the biomass would be divided into two parts, a fixed portion annotated byϕ0 and a
portion whose amount is linearly related to the growth by coefficient b .

ϕBM = ϕ0 + bµ (16)

Therefore, the entire proteome demand is:

qdemand ,pr ot eome

= qdemand ,µDP r o + qdemand ,µI P r o

= (ϕf + ϕr + ϕ0 + bµ) · ϕmax · α · βµ + (1 − ϕmax · α · βµ

(17)

Thus, for the fixed portionϕ0 of the growth dependent-proteome, the dilution rate is:

qdemand ,pr ot eome0 = ϕ0 · ϕmax · α · βµ (18)

And, for the growth-independent proteome:

qdemand ,pr ot eome0 = (1 − ϕmax · α · βµ) (19)

The portions of the proteome catalyzing respiration and fermentation pathways are proportional to the energy
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flux.


ϕr =

qE ,r
ϵr

=
er ·qr
ϵr

ϕf =
qE ,f
ϵf

=
ef ·qf
ϵf

(20)

The demand for cellular components required for growth is less than or equal to the dilution fluxes that represent
their production rate (in the sameway that Eq. 5 was derived).

qdemand ,E ≤ qd i l ut i on,E , (E ∈ cat al y t i c component s) (21)

Consequently, for the dilution rate of the proteome catalyzing the respiration pathway:

qd i l ut i on,pr ot eomer

≥ qdemand ,pr ot eome · ϕmax · ϕr

= α · βµ · ϕmax · er · qr
ϵr

(22)

And therefore:

qr ≤ ϵr
er · α · β · ϕmax

·
qd i l ut i on,pr ot eomer

µ

= kef f ,r ×
qd i l ut i on,pr ot eomer

µ

(23)

Equivalently for the fermentation pathway:

qf ≤ ϵf
ef · α · β · ϕmax

·
qd i l ut i on,pr ot eomef

µ

= kef f ,f ×
qd i l ut i on,pr ot eomef

µ

(24)

And lastly for the biomass pathway:

qd i l ut i on,pr ot eomebms

≥ qdemand ,pr ot eome · ϕmax · (bµ)
(25)

qdemand ,pr ot eome ≤ 1

ϕmax · b ·
qd i l ut i on,pr ot eomebms

µ

= kef f ,pr ot eomebms
×

qd i l ut i on,pr ot eomebms

µ

(26)
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Theseareequivalent to the inequalities in theME-model (Eq. 5), and thuswereable to implement theSSME-Model
in COBRAme.

ademand ,ener g y = σµ +w (27)

qdemand ,LacZ

= qdemand ,pr ot eome · ϕZ

= α · βµ · ϕZ

(28)

qdemand ,pr ot eome0 = ϕ0 · (ϕmax − ϕZ ) (29)

6 | ME-MODELMATLABANDCOBRAME IMPLEMENTATION
This study provided the SSME-model implemented in Matlab (2017a) with the non-linear solver (“fmincon” function,
https://www.mathworks.com/help/optim/ug/fmincon.html), as a general example of howME-model is formulated and
simulated.

The genome-scale ME-model iJL1678-ME is gained from Lloyd et al. (2018), which is available on the ecolime
github repository (https://github.com/SBRG/ECOLIme), implemented using Python(2.7/3.6). For the solver, both So-
Plex andQminos (Yang et al., 2016;Ma et al., 2017) have been tested and getting same solutions in this study.

A github repository has been created (https://github.com/ahoiching/ME-model-rate-yield-tradeoff) for the details
of the implementation process.

7 | SOLUTION SPACEOF THEME-MODEL
The COBRAme framework (Lloyd et al., 2018) was used for simulations of the E. coliME-model iJL1678-ME (Liu et al.,
2014) and the SSME-model. All fermentation product excretions except acetate were disabled in iJL1678-ME to
match the experimental observation that only acetate is excreted during aerobic growth in ALE-optimized strains and
reported strains (Basan et al., 2015; Nanchen et al., 2006). Table S4 in Expanded view shows all the essential excretion
components (including acetate) that are not blocked. Additional modifications to the ME-model are described below
(see "Experimental data fitting").

Solution spaces in two dimensions were generated using flux balance analysis (FBA). First, the independent vari-
able (a reaction flux) wasmaximized andminimized using FBA to establish the range of feasible values. Next, for inter-
vals across this range, the independent variable was fixed and the dependent variable was maximized and minimized
using FBA.

With this approach, we were able to define the solution spaces for µ–Y , µ-qac , and qg l c -qac in the ME-model. To
generate µ–Y and µ–qac solution spaces, the ME-model was optimized for the objectives ofYmax ,Ymin , qac,max , and
qac,min at each feasible µ. To determine the feasible range of µ, µ was to maximized with the carbon uptake (qg l c )
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unbounded, and the range was thus between 0 (no growth) and µmax . Ymin was calculated by minimized qg l c at each
feasible µ, whileYmin was calculated bymaximizing qg l c .

The qg l c–qac solution space shows the feasible range of qac at each feasible qg l c when µ is fixed. According to the
µ–Y solution space, the feasible range of qg l c at each µ can be calculated to generate qg l c,min and qg l c,max . The acetate
overflow rate qac was thenmaximized andminimized across this range.

8 | EXPERIMENTALDATA FITTING
The linear-threshold response of acetate overflow (qac ) upon growth (µ) is a key phenotype to reproduce in the ME-
model. Due to the poor quantitative prediction of µ–Y and µ–qac from iJL1678-ME (Lloyd et al., 2018; O’brien et al.,
2013) with the default parameter set—the linear threshold response µ-qac is too steep compared to experimental
data—modification to the model was required. Because the rate-yield tradeoff is determined by a tradeoff between
metabolic efficiencyandproteomeefficiency, the followingparameters in iJL1678-MEweremodified: enzyme turnover
rates (kef f ) of the reactions within the TCA cycle, upper bound and lower bound constraints for certain target reac-
tions (describedbelow), unmodeled protein fraction (UPF), non-growth-associatedmaintenance (NGAM), and growth-
associatedmaintenance (GAM).

The kef f modifications are based on protein abundance data (Basan et al., 2015), where the kef f of each reaction
in the TCA cycle is replaced by the measured protein efficiencies. The measured protein efficiencies turned out to be
lower than the originally assigned TCA kef f s in iJL1678-ME.

The upper bound and lower bound constraints are used to block some reactions by setting both of them to 0
mmol gDW-1 h-1. In order to fit the linear-threshold response qac from experiments, two kinds of backup pathways
("bp") were identified. The first set of "bp" reactions (categorized as bp1) have direct negative correlations to acetate
overflow as a function of µ (Fig. S2B). These are alternative pathways whose metabolic and proteomic efficiencies are
in between the acetate production and TCApathways. Fig. S2B shows thatwhen a bp1 reaction is blocked, the acetate
production line becomes more gradual. With an iteration process, each reaction can be blocked, then another bp1 re-
action becomes activates in the next simulation, this reaction can be blocked, and so forth. As a result, 17 steps of bp1
iteration were employed tomatch the slope of themeasure acetate line (Basan et al., 2015) (Fig. S3F, Table S3 from).

Another set of "bp" reactions (categorized as bp2) have direct positive correlations with µ but are only activated
in near-optimal µ (Fig. S2C). Blocking bp2 reactions helps maintain the linearity of the acetate production response in
theME-model. As a result, four steps of bp2 iteration were executed (Table S3 from Expanded view).

The rationale for blocking bp1 and bp2 reactions was carefully considered. On the computational side, blocking
reactions enabled an accurate fit to experimental data (Fig. S3F). More importantly, for a given set of kef f s, the iter-
ation process generates a minimal set of reactions that must be blocked to fit the acetate line. For example, Table S3
shows that ICL is the first bp1 reaction that is blocked. Even if the other 16 bp1 reactions are blocked, ICL prevents
themodel from achieving a good fit to the data.

Blocking these reactions is the most straightforward approach to constraining them, but a similar effects could
be achieved by: (A) adding other upper bound and lower bound except for zero, reflecting the possibility that those
reactions are restricted not to carry high fluxes, (B) lowering the kef f s, reflecting that those reactions might carry
higher protein costs, (C) changing the coefficients of themetabolites, making it less metabolic efficient, for example to
reflect the requirement of cofactors. Taking these approach needsmore thorough consideration based on biochemical
evidence.

By exploring the literature, we were able to categorize and understand some bp1 and bp2 (Fig. S3C-E): (A) short-
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cuts within the TCA cycle, (B) alternative pathways of the glycolysis/electron transport chain, (C) lipid and cell wall/
envelope biosynthesis, or (D) catabolism of amino acids and nucleotides feeding for energy synthesis. Among all those
reactions, some reactions are measured to carry no flux in higher growth by chemostats glucose uptake experiments,
such as ED, ICL, and ASPT (Nanchen et al., 2006; Novak et al., 2006); some are likely to have low kef f in higher growth,
such as the reactions in the ETCor lipidmembrane synthesis, since the cells in fast growth has lessmembrane availabil-
ity, inducing theprotein cost (Zhuang et al., 2011; Szenk et al., 2017); someof the reactions are predicted to beblocked
being caused by some autoregulation mechanism, requiring a cofactor with high protein cost, such as FTHFD, requir-
ing methionine, the amino acid that cost the most protein to get synthesized (Meinnel et al., 1993; Nagy et al., 1995),
or in a simpler explanation, the kef f is too high in the original ME-model. Some other rationales of the bp1 blockage
would be hard to be determined but could raise up an interesting topic in cellular regulations study. For instance, the
4th bp1 reaction that is found, NAD transhydrogenase (NADTRHD), reducing NADwhile oxidizing NADP, might need
to be blocked to create a similar effect when the NAD/NADP balance is regulated. There are some researches focus-
ing on theNAD/NADPbalance (Osterman, 2009; Auriol et al., 2011), but howwould this affect the acetate overflow is
not thoroughly studied yet. More details about the effect of each reaction to the overall metabolic pathway when it is
turned on is recorded in Table S3 (Expanded view).

For the global parameters, unmodeled protein fraction (UPF) provides global effects to the model as it shifts the
acetate overflow line in parallel left or right, which means changing the maximum growth while maintaining the same
phenotype depending on growth.

The result of the modification process is shown in Fig. S3F. The original iJL1678-MEmodel predicts little acetate
production around µmax (0.81 h-1. After the modification of TCA kef f s, qac at µmax approximately matches measured
data reported by Basan et al. (2015), but the µ–qac is still too steep. By modifying the UPF, the µmax increases to
1.03 h-1. By blocking the bp1 reactions step by step, the slope of µ–qac line becomes more gradual and finally fits
the experimental data well. By blocking the bp2 reactions, qac,max becomes closer to the maximum acetate overflow
in experiments.

The detailed iteration process of bp1 and bp2 modification is shown in Fig. S4. As we are blocking bp1 in the
iterative sequence, the slope (threshold) of the acetate line gradually decreases. And blocking the bp2 reaction leads
to thedropof theendpoint of the acetate line. Webelieve that this is thebest combinationof bp1andbp2modification
because in every iteration step, only one or one set of bp1 or bp2 reaction can be identified, which means there is no
other choices. We assumes that the iteration process results in the best fit is because in the last few steps of iteration,
the change of the acetate line becomes tiny, and finally, no bp1 or bp2 can be further identified. In another words, the
iteration converges.

The other global parameters, NGAM and GAM, were manipulated to fit the level ofY to data. Specifically, NGAM
captures the positive µ–Y correlation at low µ and GAM varies the maximum value ofY . The results of picking these
parameters are shown in Table S2, allowing us to fit 3 sets of experimental data (Fig. 2C–D in themain text).

9 | SOLUTION SPACEVARIATION

The SSME-model and ME-model share a common theoretical basis, so it is possible to gradually add content to the
SSME-model until it becomes equivalent to the genome-scaleME-model. We defined amethod formodifying the solu-
tion spaces of the SSME-model and ME-model to explore what model components are responsible for the difference
between the solution spaces generated by the SSME-model and the genome-scaleME-model. We aimed to determine
the reactions in the genome-scale model that could narrow the solution space if blocked and the reactions that could
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be added to the SSME-model to expand the solution space.

The principal of this method is to find reactions whose addition or removal do not affect the linear-threshold re-
sponse of acetate production, which is also the growth-yield-maximized solution. Thus, we compared the metabolic
fluxes between the growth-yield-optimized solution and the acetate-maximized or -minimized solution, then blocked
the reaction that carried flux in the maximized or minimized solution but not in the growth-yield-optimized solution.
As shown inFig. S6, this is an iterationprocess, a new target reaction appeared tobe activatedonlywhen thepreceding
reaction is blocked and a new solution is simulated. Reactions that are found in the iteration process are then catego-
rized as 4 kinds with different properties, and testified by addingmodel reactions in the SSME-model and see how the
SSME-model solution space expands (Fig. S7). As for the ALE measurements show no other fermentation products
besides acetate excreted (category (1) in Fig. S7D), the unnecessary exchange reactions are then blocked in themodel
(Table S4 shows the essential exchange reactions), where the ME-model solution space got smaller (yellow solution
space in Fig. S5). The yellow solution spaces shown in Fig. S5 is the same as the solution spaces encompassingALE data
points in themain text (Fig. 2 in main text).

10 | P/ORATIOMANIPULATION

To simulate themodification of the P/O ratio in theME-model, a pseudo-reaction for proton leakage was added to the
model that pumped one proton from the periplasm to the cytosol. For simulations in themanuscript, flux through this
reaction was fixed to 50 or 100mmol gDW-1 h-1.

The P/O ratio is calculated by the ratio between the ATP synthase flux and the oxygen uptake flux.

11 | GNDKNOCKOUT SIMULATION

To simulate ∆gnd, the metabolic reaction phosphogluconate dehydrogenase (GND) in the ME-model was blocked by
setting the upper and lower bounds to 0mmol gDW-1 h-1.

12 | TABLES
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TABLE S1 Parameters comparison between two coarse-grainedmodels. Comparison between the coarse-grained
proteome allocationmodel Basan et al. (2015) and SSME-model. The derivation in detail is shown in "5 SSME-model
parameter derivation".

Basan’s Value SSME-model Value Comments
ϕ0 81% UPF 81% Same concept
σ 45.7(mM/OD) σ Energy

+ β Carbon substrate
–> Biomass

45.7 Energy
+ 28.5 Carbon substrate

–>1.0 Biomass

Incorporate
as

reaction
stoichiometry

in
SSME-model

β 28.5(mM/OD)

Sac 1/3 Carbon substrate
–>Sac Acetate
+ ef Energy

1.0 Carbon substrate
–>1/3 Acetate
+ 2.0 Energy

ef 2.0

SCO2
1/6 Carbon substrate–>

SCO2
CO2

+ er Energy
1.0 Carbon substrate–>

1/6CO2+ 4.4 Energy
er 4.4
b 12.0% kef f ,bms = 1/b

8.33/3600
(mM/OD/sec) Incorporated as

kef f values
in SSME-model
where the

time unit is second
εf 750(mM/OD/hr) kef f ,f er = εf /ef

375/3600
(mM/OD/sec)

εr 390(mM/OD/hr) kef f ,r es = εr /er
88.6364/3600
(mM/OD/sec)

ϕ0, umodeled protein fraction (UPF)
σ(β ), energy (carbon) demand for growth
Sac (SCO2

, stoichiometry factor for acetate (CO2) from fermentation (respiration)
ef (er ), carbon efficiency, fermentation (respiration)
εf (εr ), proteome efficiency, fermentation (respiration)
b, proteomic sector for supporting biomass reaction
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TABLE S2 ME-model parameters. Global parameter selection in iJL1678-MEmodel to fit the µ–Y , µ–qac data as in
Fig. 2C andD.

Model Scale Experiment UPF (%) GAM (mmol/gDW/hr) NGAM (mmol/gDW/hr)

Small scale

(Nanchen et al., 2006) 0.82 75 0

(Basan et al., 2015) 0.81 45.7 0

ALE 0.80 40 0

Genome scale

(Nanchen et al., 2006) 0.30 34.98 15

(Basan et al., 2015) 0.18 34.98 1

ALE 0.12 15 0
UPF, unmodeled protein fraction
(N)GAM, (non)growth associatedmaintenance for energy

TABLE S3 iJL1678-MEmodel modification (blocked reactions). Reactions that need to be turned off in themodel
to get quantitative fit of µ–Y , µ–qac data as in Fig. 2C andD.

TABLE S4 Essential exchanges. Boundary reactions in theME-model that need to be turned on.

TABLE S5 Solution space variation (Below). Reactions that after being turned off, qac,min increases. The variation
of µ–qac solution space is shown in Fig. S6B.

TABLE S6 Solution space variation (Above). Reactions that after being turned off, qac,max decreases. The µ–qac
solution space would varied as shown in Table S6A.

TABLE S7 ALE phenotypesmeasurements. µ, qac and qg l c measurements of the E. coli adaptedMG1655 strains.
Strains are replicates from LaCroix et al. (2015).

TABLE S8 E. coliK-12MG1655WT phenotypesmeasurements. µ, qac and qg l c measurements. Data from
LaCroix et al. (2015).

TABLE S9 E. coliNCM3722 glucose uptake titration phenotypes. Data fromBasan et al. (2015).

TABLE S10 E. coliK-12MG1655 chemostat measurements. Data fromNanchen et al. (2006).
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TABLE S11 13Cmetabolic flux analysis data.Metabolic fluxes distribution of the highest µ strain and highestY
strain among the ALE endpoint strains.

• Tab "Reactions" 13CMFAmodel and carbonmapping network.
• Tab "Net_fluxes" 13CMFA calculated net fluxes. LB and UB are the 95% confidence intervals.
• Tab "SymMets" 13CMFAmodel symmetric metabolite carbonmappings.
• Tab "MS_data" Measured mass distribution vectors (MDVs) by LC-MS/MS and their associated carbon mappings
used forMFA calculations.
• Tab "Flux_data"Measured uptake and secretion rates by HPLC.

13 | FIGURES

FIGURE S1 Scheme of the coarse-grained proteome allocationmodel Basan et al. (2015).

FIGURE S2 Modification ofME-model for fitting the experimental data, based on the guideline derived from
SSME-model. (A) Reduction of the enzyme efficiency for respiration (kef f ,r es ) causes amore gradual acetate line.
Reduction of UPF increases themodel-predictedmaximum µ, shifting the acetate line to higher µ. (B) Another
approach of gettingmore gradual acetate line is to block bp1 reactions. (C) Activation of bp2 reactions (such as the
Entner–Doudoroff pathway bypassing glycolysis) cause an inflection point and extension of the acetate line to higher
µ. (D)Workflow for theME-model modification process. In the genome-scaleME-model, some TCA cycle reactions
appeared as bp1 reactions, but, because they belong to themajor respiration pathway of the cell, we will decreased
their kef f s rather than blocking them entirely.

FIGURE S3 Summary of themodifications to the genome-scaleME-model. (A) Compared to original iJL1678-ME,
unmodeled protein fraction (UPF) is halved to 18%. (B) For the enzyme efficiency parameter kef f , only the TCA kef f s
aremodified. (C) The subsystems of the 24 bp1 reactions. (D) The subsystems of 26 bp2 reactions. (E) bp1 and bp2
reactions on the pathwaymap of central metabolism. (F) Acetate lines for the steps in the fitting process. More
detailed illustration process is shown in Fig. S4.

FIGURE S4 Iteration process of filling theME-model prediction gap of growth rate dependent acetate excretion.
First two steps of bp1 iteration process are shown in the left two figures, where as we block the first bp1 reaction
(ICL), the slope (threshold) of the acetate line drops. The changes of the threshold (bp1modification) and acetate line
end point (bp2modification) from iteration Step 3–21 are shown in the right figure. Step 3–18 are themodification on
bp1 reactions, where the threshold (red squares) gradually drops from high growth to low growth. Step 19–21 are
themodification on bp2 reactions, where the acetate line end point (in red circles) drops. The blue solid line is the
final prediction of µ–qac relation, which is the same as the blue line in S3–F.More detail about bp1 and bp2 reactions
are in Table S3.
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FIGURE S5 By blocking byproduct excretion pathways in theME-model, which is verified by the experimental
data, the solution spacewas reduced from the pink region to the yellow region.

FIGURE S6 µ–qac solution space variation in theME-model. Narrowing in the feasible range of alternative
suboptimal solutions by blocking some target reactions. The new solution space after the variation is shown as the
yellow in (A) and (B), with the original solution space in pink. (A) 24 target reactions (Table S6) that are blockedwhere
maximum qacs in high µ get lower, where the upper edge of the yellow region is below the upper edge of the pink
region. The activation of one of these 24 reactions thus corresponding to higher qac with lowerY . (B) 11 target
reactions (Table S5) corresponding to lower qac with lower Y, blocking those reactions will get theminimum qac
(lower edge of the yellow region) closed to theY -maximized qac solution. (C) Themethod of picking reactions to
block: Looking for the reactions that are not activated in the yield-maximized solution but activated at themaximal
andminimal of the µ–qacsolution space, where the principal is to keep theY -maximized solutions unchanged.

FIGURE S7 Expansion of solution space from the SSME-model by addingmodel reactions. The expanded part of
the solution space is shown as yellow in (A)–(C), compared to the original SSME-model solution spaces are in blue. (A)
All added reactions ((1)-(4) in D) expand the solution space to include lower-Y solutions (B) Reactions (1) and (3)
expand the solution space to low-qac at high µ. (C) Reactions (2) and (4) expand the solution space to high-qac across
all µ. (D)Model reactions that are added in the SSME-model for expanding the original solution space, all those
reactions are guaranteed not be activated in the Y-maximized solutions so that theY -optimal solution remains the
same to fit data fromBasan et al. (2015). Reaction (1) corresponds to the reactions that would generate products
other than acetate such as pyruvate excretion, lactate excretion, etc. Reaction (2) is representative to the reactions
that would generate other products, but at the same time generating acetate, such as pyruvate formate lyase (PFL),
which produce formate and acetyl-CoA (precursor of acetate) from pyruvate. Reaction (3) and (4) could both be
referred from the futile cycle in energy production and consumption, where (3) are the reactions that are less
efficient than the optimal pathway, such as the alternative reactions in ETCwhich are less efficient in transporting
electrons, while (4) are the reactions that would wastemore energy in the same growth comparing to the optimal
state, such as the reactions that would cause proton leakage.

14 | REFERENCES
REFERENCES
Antoniewicz, M. R., Kelleher, J. K. and Stephanopoulos, G. (2006) Determination of confidence intervals of metabolic fluxes
estimated from stable isotopemeasurements. Metab. Eng., 8, 324–337.

Auriol, C., Bestel-Corre, G., Claude, J.-B., Soucaille, P. andMeynial-Salles, I. (2011) Stress-induced evolution of escherichia coli
points to original concepts in respiratory cofactor selectivity. Proc. Natl. Acad. Sci. U. S. A., 108, 1278–1283.

Basan, M., Hui, S., Okano, H., Zhang, Z., Shen, Y., Williamson, J. R. and Hwa, T. (2015) Overflowmetabolism in escherichia coli
results from efficient proteome allocation. Nature, 528, 99–104.

Fong, S. S., Burgard, A. P., Herring, C. D., Knight, E. M., Blattner, F. R., Maranas, C. D. and Palsson, B. O. (2005) In silico design
and adaptive evolution of escherichia coli for production of lactic acid. Biotechnol. Bioeng., 91, 643–648.

LaCroix, R. A., Sandberg, T. E., O’Brien, E. J., Utrilla, J., Ebrahim, A., Guzman, G. I., Szubin, R., Palsson, B.O. and Feist, A.M. (2015)
Use of adaptive laboratory evolution to discover keymutations enabling rapid growth of escherichia coli K-12MG1655 on
glucoseminimal medium. Appl. Environ. Microbiol., 81, 17–30.



16 CHUANKAI CHENG ET AL.

Leighty, R. W. and Antoniewicz, M. R. (2012) Parallel labeling experiments with [U-13C]glucose validate e. coli metabolic net-
workmodel for 13Cmetabolic flux analysis. Metab. Eng., 14, 533–541.

Liu, J. K., O’Brien, E. J., Lerman, J. A., Zengler, K., Palsson, B. O. and Feist, A. M. (2014) Reconstruction and modeling protein
translocation and compartmentalization in escherichia coli at the genome-scale. BMC Syst. Biol., 8, 110.

Lloyd, C. J., Ebrahim, A., Yang, L., King, Z. A., Catoiu, E., O’Brien, E. J., Liu, J. K. and Palsson, B. O. (2018) COBRAme: A computa-
tional framework for genome-scale models of metabolism and gene expression. PLoS Comput. Biol., 14, e1006302.

Ma, D., Yang, L., Fleming, R. M. T., Thiele, I., Palsson, B. O. and Saunders, M. A. (2017) Reliable and efficient solution of genome-
scale models of metabolism andmacromolecular expression. Sci. Rep., 7, 40863.

McCloskey, D., Gangoiti, J. A., Palsson, B. O. and Feist, A. M. (2015a) A ph and solvent optimized reverse-phase ion-paring-
LC–MS/MS method that leverages multiple scan-types for targeted absolute quantification of intracellular metabolites.
Metabolomics, 11, 1338–1350.

McCloskey, D., Utrilla, J., Naviaux, R. K., Palsson, B. O. and Feist, A. M. (2015b) Fast swinnex filtration (FSF): a fast and robust
sampling and extractionmethod suitable formetabolomics analysis of cultures grown in complexmedia. Metabolomics, 11,
198–209.

McCloskey, D., Young, J. D., Xu, S., Palsson, B. O. and Feist, A. M. (2016a) MID max: LC-MS/MS method for measuring the
precursor and productmass isotopomer distributions ofmetabolic intermediates and cofactors formetabolicflux analysis
applications. Anal. Chem., 88, 1362–1370.

— (2016b) Modeling method for increased precision and scope of directly measurable fluxes at a Genome-Scale. Anal. Chem.,
88, 3844–3852.

Meinnel, T., Mechulam, Y. and Blanquet, S. (1993) Methionine as translation start signal: a review of the enzymes of the path-
way in escherichia coli. Biochimie, 75, 1061–1075.

Molenaar, D., van Berlo, R., de Ridder, D. and Teusink, B. (2009) Shifts in growth strategies reflect tradeoffs in cellular eco-
nomics. Mol. Syst. Biol., 5, 323.

Mori, M., Hwa, T., Martin, O. C., De Martino, A. and Marinari, E. (2016) Constrained allocation flux balance analysis. PLoS
Comput. Biol., 12, e1004913.

Nagy, P. L., Marolewski, A., Benkovic, S. J. and Zalkin, H. (1995) Formyltetrahydrofolate hydrolase, a regulatory enzyme that
functions to balance pools of tetrahydrofolate and one-carbon tetrahydrofolate adducts in escherichia coli. J. Bacteriol.,
177, 1292–1298.

Nanchen, A., Schicker, A. and Sauer, U. (2006) Nonlinear dependency of intracellular fluxes on growth rate in miniaturized
continuous cultures of escherichia coli. Appl. Environ. Microbiol., 72, 1164–1172.

Novak, M., Pfeiffer, T., Lenski, R. E., Sauer, U. and Bonhoeffer, S. (2006) Experimental tests for an evolutionary trade-off be-
tween growth rate and yield in e. coli. Am. Nat., 168, 242–251.

O’brien, E. J., Lerman, J. A., Chang, R. L., Hyduke, D. R. and Palsson, B. Ø. (2013) Genome-scale models of metabolism and gene
expression extend and refine growth phenotype prediction. Mol. Syst. Biol., 9, 693.

Orth, J. D., Conrad, T. M., Na, J., Lerman, J. A., Nam, H., Feist, A. M. and Palsson, B. O. (2014) A comprehensive genome-scale
reconstruction of escherichia coli metabolism–2011. Mol. Syst. Biol., 7, 535–535.

Osterman, A. (2009) Biogenesis and homeostasis of nicotinamide adenine dinucleotide cofactor. EcoSal Plus, 3.
Sambrook, J. and Russell, D. W. (2001) Molecular cloning: a laboratory manual., 3rd edn.(cold spring harbor laboratory press:
Cold spring harbor, new york).



CHUANKAI CHENG ET AL. 17

Szenk, M., Dill, K. A. and de Graff, A. M. R. (2017) Why do Fast-Growing bacteria enter overflow metabolism? testing the
membrane real estate hypothesis. Cell Syst, 5, 95–104.

Yang, L., Ma, D., Ebrahim, A., Lloyd, C. J., Saunders, M. A. and Palsson, B. O. (2016) solveME: fast and reliable solution of nonlin-
earMEmodels. BMC Bioinformatics, 17, 391.

Young, J. D. (2014) INCA: a computational platform for isotopically non-stationary metabolic flux analysis. Bioinformatics, 30,
1333–1335.

Zhuang, K., Vemuri, G. N. and Mahadevan, R. (2011) Economics of membrane occupancy and respiro-fermentation. Mol. Syst.
Biol., 7, 500.


