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Existence of the neutral fitness landscape in the case of homogeneous groups. Consider the
situation, where w = 0 and, therefore, the group properties depend only on the group size. A

group of size ¢ grows in size to ¢ + 1 within time 7;. Here we show that if 7; = In (#) all life
cycles have the same growth rate A = 1. We prove this by induction:

* The base of induction is given by Eq (4), which states that if 77 = In (%) and
T =1n (%) then A = 1 for any life cycles fragmenting at size 3 or smaller.

* The step of induction must show that if the assumption of induction holds true for
maximal size M, then under adding Ty = In (25 ), the assumption also holds true for
maximal size M + 1. To prove the step of induction, we only need to consider life cycles
fragmenting exactly at the size M + 1 because life cycles fragmenting at sizes smaller
than M + 1 have A = 1 according to the assumption of induction.

To construct the matrix @) and find the growth rate of considered life cycles, we need to
characterize the set of offspring and developmental trajectories. In an arbitrary life cycle, the
fragmentation of a homogeneous group of size M results in production of offspring groups of
sizes ranging from 1 to M. In total, M different types of offspring can be produced, so the size
of the matrix @) is M by M. Each of the offspring will grow up to size M + 1 and then fragment,
thus there is only one developmental trajectory for each type of offspring with p;(7) = 1. The
developmental time of the trajectory T (7) is given as the sum of incremental growth time

~ M M 1
Tk(ﬂ:Zszln( ,:) (19)
=k

where k denotes the size of the newborn offspring.

An arbitrary life cycle can be characterized by the distribution of offspring sizes produced
upon fragmentation /V;, where ¢ denotes the size of offspring. By the conservation of cell
number during reproduction Zf\il iN; = M + 1. Therefore, according to Eq (16), for an
arbitrary life cycle, the elements of matrix ();; are given by

M1

Qi; = Nie (*57) (20)
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To prove the step of induction, we verify whether A = 1 is the solution of Eq (18), with matrix @
given by Eq (20). Plugging A = 1 into Eq 20), we have Q;; = N, 747, so the Eq (18) becomes
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Based on the properties of determinant, we can take out the coefficients of each row and each
column, then the left hand side of Eq (21)) becomes

M+1
1— A 1M+1 - 1
[12,iNi 1 -5 1 22)
(M +1)M : : - :
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1 1 R MNu
For convenience, we neglect the coefficient and denote % as K;. Thus, the determinant is
1-K; 1 e 1
1 1-Ky - 1
. . . (23)
1 1 e 1=Ky
Next we calculate the determinant by splitting the first row,
1- K, 1 1 1 -K 0 0 . 0
1 1— Ko 1 e 1 1 1- K 1 e 1
1 1 1- Kz - 1 _ 1 1 1- K3 1
1 1 1 o 1—Ku 1 1 1 o 1=Ky
1 1 1 1
1 1-Ks 1 1
+| 1 1 1-K; 1
1 1 1 1- Ky
(24)
For the second part, splitting the second row, we can get
1 1 1 e 1 1 1 1 cee 1
1 1-Ks 1 1 0 —Ky 0 0
1 1 1-Ks 1 |1 1 1-Ks 1
1 1 1 1-Knm 1 1 1 1-—
Y s
1 1 1 1
1 1 1 1
+|1 1 1-Kj 1
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The second term in Eq (23)) is zero because the determinant has two identical columns, therefore
only the first term remains. Continuing splitting the remaining rows of the first term of Eq (25)),
we finally obtain

1 1 1 1 1 1 1 1
1 1-Ks 1 1 0 —Ko 0 0
1 1 1— Ky - 1 _|1 1 1-Kg --- 1
1 1 1 e 1=Ky 1 1 1 1— Ky
1 1 1 1
0 —K, 0
_ |0 0 —K3 0
1 1 1 - 1-Kuy (26)
1 1 1 1
0 —K, 0 0
_10 0 —K3 0
0 0 0 e =Ky
M
= ()] K
i#1

Now, we look back at the first term in Eq (24), we split the second row

-K 0 0 0 —-K; 0 0 0
1 1-Ks 1 1 0 —Ks 0 0
1 1 1— Ky --- 1 _ 1 1 1-Kg --- 1
1 1 1 1-—Ku 1 1 1 1-Kuy
-K; 1 1 1
1 1 1 1
n 1 1 1—-K;q 1
1 1 1 e 1Ky

27)

For the second term at the right hand side of Eq (27), similar to Eq in the last step, we can
work out that it equals (—1) 1 Hf\iz K;. That means we can get (—1)¥ ! Hf\ij K; when
split the j-th row. So we keep the same procedure to split the remaining rows of the first term in
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Eq (27). After that, the initial determinant changes to

1 - K, 1 1 1 —K; 0 0 0
1 1- K, 1 1 0 —-Ky 0 0
1 1 1-Ks - 1 _| o0 0 —-Kg --- 0
1 1 1 o 1=Ky 0 0 0 - —Kuyg
M M
+ (-t Z HKi
J=1i#j
M M M
=M K+ )M T K
i=1 J=1i#j
M M M
~ 0 1Tk ST
i=1 J=1i#j
gy (QLEDM (M DMSE, i
Hgl iNi Hf\il iNi
=0,

(28)

where we used K; = J\f]\'}'l and Zf\il 1N; = M + 1 in the last two steps.

This proves that an érbitrary life cycle fragmenting at size M + 1 has the growth rate
A =1,if T; = In (“}) for any ¢ < M. This means that T; = In (1) is a neutral fitness

landscape for the scenario of homogeneous groups.
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