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Supporting information

S1 Appendix.
Population growth rate in the case of stochastic developmental programs. Consider a
population in which each group emerges as one of S initial types. These types could be the
newborn groups of different size and/or composition. With time passing, a group grows from its
initial size to maturity and subsequent fragmentation. The set of growth events (cells divisions,
mutations, etc) may vary from group to group. We call such an event chain “developmental
trajectory” and designate it as τ . Any two groups of the same initial type may adopt different
developmental trajectories for a number of reasons, such as mutations, stochastic developmental
programs, or different environmental conditions. We use the following parameters of the
developmental trajectory: i(τ) – the initial state of the group leading to the given developmental
trajectory, pk(τ) – the probability that a group that emerged as initial type k will follow the
trajectory τ , so pk(τ) = 0, if k 6= i(τ), T (τ) – the time necessary to the newborn group to
complete the trajectory τ and N(τ) = (N1, N2, · · · , NS) – the vector of numbers of each
offspring type produced during the fragmentation at the end of the trajectory τ .

The population features an explicit maturation component: a newborn group does not
reproduce until time T (τ) has passed. Thus, to describe the population dynamics and find the
population growth rate λ, it is necessary to consider the population demography. To do so, we
characterize each group at each moment of time by the age parameter η. We define the age in a
way that the newborn group has η = 0, while the group that reached the end of the
developmental trajectory and is about to fragment has η = 1. Along the trajectory, the age
increases at a constant rate equal to 1

T (τ) , i.e. the rate of ageing differs between different
trajectories.

From the perspective of the population dynamics, any two groups sharing the same
developmental trajectory τ and age η are identical. Thus, the state of the whole population can
be described by the density function ζ(τ, η, t), which shows how many groups on the
developmental trajectory τ have age η at the given time t. In the stationary regime, where the
fraction of groups of each type stays constant, the density function grows exponentially,

ζ(τ, η, t) = ρ(τ, η)eλt, (8)

where ρ(τ, η) is the stationary density distribution of groups in a population.
Within a given developmental trajectory, ageing occurs at the same rate for all groups.

Therefore, the dynamics of the density function at a given age η is determined by the balance
between influx of maturing younger groups and the outflux of groups becoming too old. Both
processes occur with the same rate 1

T (τ) , thus the density function must satisfy the transport
equation

∂ζ

∂t
= − 1

T (τ)

∂ζ

∂η
. (9)
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Combining Eqs. (8) and (9) we get

λρ = − 1

T (τ)

∂ρ

∂η

The solution of this equation is

ρ(τ, η) = ρ0(τ)e
−λT (τ)η, (10)

where ρ0(τ) is the stationary density distribution of newborn groups with η = 0.
To find ρ0(τ), we use the fact that each newborn organism is produced as a result of the

fragmentation of some mature organism. Thus, the rate of emergence of newborn organisms in
the population (j0) is the same as the rate of production of offspring in the course of
reproduction of mature organisms (j1).

For any developmental trajectory τ , the rate of entering into the newborn state per time unit
is equal to

j0(τ) =
ζ(τ, 0, t)

T (τ)
, (11)

where the right hand side of the equation is the product of the number of newborn groups and
the rate of ageing. The number of offspring with developmental trajectory τ is equal to the
product of the total number of offspring of type i(τ) produced by all mature organisms and the
probability of the offspring to adopt this developmental trajectory (pi(τ)(τ))

j1(τ) = pi(τ)(τ)
∑
τ ′

Ni(τ)(τ
′)

T (τ ′)
ζ(τ ′, 1, t), (12)

where summation is performed over all possible developmental trajectories of parent groups.
Since each produced propagule is a newborn organism, j0(τ) = j1(τ). Therefore,

ρ0(τ)

T (τ)
= pi(τ)(τ)

∑
τ ′

Ni(τ)(τ
′)

T (τ ′)
ρ0(τ

′)e−λT (τ ′). (13)

To obtain the expression connecting the population growth rate λ with parameters of
developmental trajectories τ , we multiply both parts by Nj(τ)e−λT (τ) (note that in general
j 6= i(τ)) and sum over all possible developmental trajectories

∑
τ

Nj(τ)

T (τ)
ρ0(τ)e

−λT (τ) =
∑
τ

pi(τ)(τ)Nj(τ)e
−λT (τ)

(∑
τ ′

Ni(τ)(τ
′)

T (τ ′)
ρ0(τ

′)e−λT (τ ′)

)
.

(14)
We define

Xi =
∑
τ

Ni(τ)

T (τ)
ρ0(τ)e

−λT (τ) (15)

Qi,j =
∑
τ

pi(τ)Nj(τ)e
−λT (τ), (16)

Note that pj(τ) = 0 if j 6= i(τ).
Taking into account that pj(τ) = 0 if j 6= i(τ), Eq (14) becomes

Xj =
∑
i

Qi,jXi. (17)

Also in the definition of Qi,j , the result of summation over all trajectories τ is the same as over
only developmental trajectories starting from the initial state of type j, since pj(τ) = 0, if

March 21, 2019 2/3



j 6= i(τ), because an organism emerged as one type has no access to developmental trajectories
originated from other types.

Eq (17) can be satisfied only if

det(Q− I) = 0, (18)

where elements of matrix Q are defined by Eq (16) and I is identity matrix. This equation
allows to infer the population growth rate λ if the parameters of each trajectory are known (i(τ),
pi(τ), N(τ) and T (τ)). In most interesting cases, this has to be done numerically.
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