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C Loverdo

A Order of magnitude of the encounter time be-
tween two bacteria

The typical time to �nd one target of radius a in a sphere of radius b by di�usion
is of the order of b3/(Da), so the typical time when there are N bacteria in a
volume V is of the order of V/(NDa). For bacteria, a is in the micrometer
range. Bacteria such as salmonella or E.coli typically swim at 10µm/s, and
change direction every second, which gives a di�usion coe�cient of the order
of 10−10m2/s [1, 2, 3] (The peristaltic motions of the digesta are large scale
movement rather than local di�usion, so we assume they have a smaller e�ect
on di�usion). The mouse's cecum has a volume of the order of (1cm)3. In
experiments of [4], the smallest inoculum consists in N = 105 bacteria, which
is already large compared to what could be a realistic number of pathogenic
bacteria in food poisoning (105 is the typical number of Salmonella for food
poisoning in humans [5], which are much larger than mice). With these numbers,
the typical encounter time is of the order of 105s, i.e 30h, about 10 times longer
than the typical digestion time in mice.

B Argument for high enchainment probability upon
replication

When a bacterium replicates, the time for septation is of the order of a few
minutes. We intuitively think that this time is much larger than the time τk
required for bacteria to stick together when they randomly meet. The aim of
this section is to check this intuition by giving an overestimate of τk.

If the di�usion coe�cient is high enough, the time for bacteria to stick to
each other will be limited by which proportion of the time they spend in close
vicinity, and the rate k at which bacteria stick to each other when they are in
close vicinity, k being the inverse of τk. If the di�usion coe�cient is smaller,
then the time to �rst encounter will also play a role, but as we calculate an
overestimate of τk, we can neglect this scenario.

We use the data on �gure 1k of [4] about non-dividing bacteria (so the only
sticking is from random encounters). The majority of them are aggregated
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after τexp up to 8 hours (from the inoculum ingestion to the sampling used for
imaging) for a concentration of 107− 108 bacteria. As we will see, this estimate
of τk is proportional to τexp and N , so to be conservative, as we will calculate
an overestimate of τk, we take the highest concentration and the maximum
experimental time, i.e. N = 108 bacteria in V = 1cm3 (cecum volume) and
τexp = 8 hour.

The bacteria typical size is a few micrometers, we thus take 3µm as an
overestimate of the maximum bacterial size. Thus to be in close contact, two
bacteria must be at most at a = 3µm away. Let us assume that then, the
volume of possible contact is 4/3πa3, which is also an overestimate, because
only certain orientations will allow bacteria to touch each other. Then, the
proportion of time spent in close contact will be of the order of (N4πa3)/(3V ).
Then the typical time to stick to each other will be τexp = τk3V/(N4πa3).
Then τk = τexpN4πa3/(3V ). Numerically, we obtain about 5 minutes as an
overestimate of τk.

Note that this is a large overestimate. Indeed, when bacteria get clumped to
each other, their e�ective concentration decreases, thus it takes longer for the
last bacteria to meet others, and thus the time for most bacteria to be clumped
will be signi�cantly larger than the inverse of the early clumping rate.

With all these highly conservative estimates, we �nd τk at the very most of
the same order of magnitude as the septation time, and very likely much smaller.
Hence the probability for bacteria to escape enchainment is small, which justi�es
that we take in general the limit of no escape.

C Model with bacterial escape (δ > 0) and dif-
ferential loss (c 6= c′).

Figure A shows how the growth rate depends on r for di�erent δ, δ′, δ′′, c and
c′.

Our numerical study of the system showed us that there is some critical
value δc below which the behavior is qualitatively similar to the behavior of the
system with δ = 0, i.e. with a �nite maximum of the growth rate of the free
bacteria as a function of the replication rate; and above which the growth rate
continues to increase with replication rate. Actually, for δ > 0.5, the growth
rate necessarily continues to increase with the replication rate. Indeed, upon
replication, one free bacteria becomes two daughter bacteria, an average of 2δ
of them staying free. Thus the net gain in free bacteria is 2δ − 1. Thus for
δ > 0.5, the growth rate of free bacteria is at minimum r(2δ−1). Consequently,
δc ≤ 0.5.

We detail here how to obtain the approximation for the chain length distri-
bution. In the long time limit, the number of chains of length i is of the order of
Cpi exp(λt), with λ the largest eigenvalue. Equation (8) of main text simpli�es
to:

λpi = r(2δ′ − i)pi + rpi−1(i− 1− 2δ′ + 3δ′′ − iδ′′)− (i− 1)piα+ 2αpi+1 − c′pi
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Figure A: Growth rate λ as a function of the replication rate r, both in units of α.

Numerical results (colors), with δ = δ′ = δ′′ (solid lines), δ = δ′, and δ′′ = 0 (dashed

lines), δ′ = δ′′ = 0 (dotted lines). δ = 0, 0.1, 0.2, 0.3, 0.5. Note that for δ = 0, solid,

dashed and dotted lines collapse, as expected. The black dotted lines are either r/α,

(r − c)/α or (r − c′)/α. As expected, if c = c′, the resulting growth rate are the same

than when c = c′ = 0, minus c. If c 6= c′, the results are closer for small r/α to the

results if both c and c′ had the c value. For the numerical results, nmax = 40.

Assuming that i is large,

pi ' (1− δ′′) r

r + α
pi−1

is required. Using this approximation for all i, the proportion of chains of length
k is:

pk =

(
1− (1− δ′′) r

r + α

)(
(1− δ′′) r

r + α

)k−1
Free bacteria are released at a rate 2rδ′ + 2α per chain. This rate is inde-

pendent of the chain length. The direct contributions to the increase of free
bacteria from chains of length i compared to all the larger chains will be (with
K = (1− δ′′)r/(r + α)):

contribution larger

contribution i
=

(2rδ′ + 2α)
∑∞
j=i+1(1−K)Kj

(2rδ′ + 2α)(1−K)Ki
=

∞∑
j=1

Kj =
K

1−K
=

(1− δ′′)r
α+ rδ′′

If r is small compared to α (replication rate � breaking rate), then this ratio
is small. Thus the larger chains are quickly negligible. Indeed, in this regime,
chains typically dislocate before new replications, so there are few larger chains.

Figures B, C, D, E show how the chain length distribution depends on δ, δ′,
δ′′, c and c′.
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Figure B: Chain length distribution. All as in main �gure 2D (model with bac-

terial escape) (numerical results: points linked by solid lines), except that the ap-

proximation (9) of main text (dotted lines) is rescaled by the numerical value at

n = 10, i.e. instead of representing log(pi,approx), what is represented is log(pi,approx ∗
p10,numeric/p10,approx) = log(pi,approx) + log(p10,numeric/p10,approx). This shows that

the approximation captures well the length distribution of large chains. We do this

because the base for the analytical approximation is the ratio pi+1/pi, for which we get

a limit expression valid for large i. To calculate the whole distribution pi, we assume

that this limit expression for the ratio is valid for any i, whereas this will not be the

case for small i. If the limit expression for pi+1/pi is correct for large i but not for

small i, the slope in log scale plot will be correct, but with some o�set dependent on

how wrong we got the small i case. Making this renormalization enables to check more

easily whether the slope is correct. δ = δ′ = δ′′ = 0 (black), 0.1 (blue), 0.2 (purple),

0.3 (red). nmax = 40.

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○
○

○
○

○
○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○
○

○
○

○
○

○
○

○
○

○
○ ○ ○ ○ ○ ○ ○ ○ ○

○
○

○
○

○
○

○
○

○
○

○
○

○
○

○
○ ○ ○ ○ ○

○
○

○
○

○
○

○
○

○
○

○
○

○
○

○
○

○
○

○
○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

0 5 10 15 20

10-7

10-5

0.001

0.100

r/α=10 

r/α=1 r/α=0.1 

Chain length 

P
ro

po
rti

on
 

δ = δ′ ≥ 0, δ′′ = 0
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Figure C: Chain length distribution. All as in �gure 2D (model with bacterial escape)

(numerical results: points linked by solid lines), except the values of δ′ and δ′′: δ =

0, 0.1, 0.2, 0.3. Dotted lines: approximation (5) of main text. Approximation (9) of

the main text predicts that the distribution should depend only on δ′′, and not δ nor

δ′. In these �gure where δ′′ = 0 but δ (and in the left pannel δ′) have non-zero values,

we do observe that the distribution, in particular its slope, is closest to the result for

δ = δ′ = δ′′ = 0. c = c′ = 0, nmax=40.
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Dotted lines: approximation (9) of
main text, rescaled by the numerical
value at n = 10 similarly to �gure B.

Figure D: Chain length distribution, for δ = δ′ = 2δ′′. Other parameters as in

�gure 2D of main text : δ = 0, 0.1, 0.2, 0.3. c = c′ = 0, nmax = 40. Dotted lines:

approximation (9) of main text. The approximation does not work as well as when

δ = δ′ = δ′′.

Figure E: Chain length distribution. Similar to �gure 2D of main text. δ = δ′ = δ′′ =

0, 0.1, 0.2, 0.3. Thick solid lines with no markers are for c = c′ = 0, Thin solid lines

with ◦ are for c = 0.2α, c′ = 0.5α. Dotted lines: approximation (9) of main text.

There is very little change in the chain length distribution. nmax = 40.
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D Chain length distribution with a �xed replica-
tion time - approximation

Below, we present in details the assumptions and calculations to obtain the
approximation of the chain length distribution when bacteria replicate every τ .

We de�ne ni(t) the number of chains of length i at t with t taken just before
a replication. Assuming i even,

ni(t+ τ) =

∞∑
j=0

ni/2+j(t)l(i+ 2j, 2j, τ).

This is because just before a replication, there are ni/2+j(t) chains of length
i/2 + j. Then, just after the replication, these chains are of length i+ 2j. Time
t + τ is just before the next replication. With probability l(i + 2j, 2j, τ), these
chains of length i+2j have lost 2j bacteria on their edges and are now chains of
length i. We sum over all the possible j. In the long time, ni(t) = Cpi exp(λt),
with λ the long term growth rate, that is such that exp(λτ) = N , with N the
largest eigenvalue of the matrix. Replacing l(i + 2j, 2j, τ) by its expression as
in equation (11) of the main text, the previous equation leads to:

Npi =

∞∑
j=0

p i
2+j

e−ατ(i−1+2j)(eατ − 1)2j
22j

(2j)!
.

We compare the 1st term of the sum to the rest of the sum. The �rst term
isp i

2
e−ατ(i−1), the rest of the sum is:

∞∑
j=1

p i
2+j

e−ατ(i−1+2j)(eατ − 1)2j
22j

(2j)!
.

We divide both by e−ατ(i−1). Then this is equivalent of comparing pi/2 with:

S =

∞∑
j=1

p i
2+j

e−2jατ (eατ − 1)2j
22j

(2j)!
.

When ατ is large, links typically break before the next replication, so there is
little cluster formation, and it is thus expected that the chain length distribution
decreases fast with i, so that for j > 0, p i

2+j
� pi/2. When ατ is small,

replication is fast compared to the typical time for one link to break. However,
for a chain of length i/2, τ has to be compared to (i/2− 1)/α, the typical �rst
link breaking time, thus we expect ni to decrease with i for i large enough, thus
p i

2+j
. pi/2 for j > 0. We de�ne B such as p i

2+j
≤ B, ∀j > 0. For ατ large,

B � pi/2, and for ατ small, if i is large enough, B . pi/2. Then:

S ≤
∞∑
j=1

B(1− e−ατ )2j
22j

(2j)!
= B (cosh (2(1− exp(−ατ)))− 1)

For ατ large, (cosh (2(1− exp(−ατ)))− 1) ' cosh(2)− 1 ' 2.7. For ατ small,
(cosh (2(1− exp(−ατ)))− 1) ' 2(ατ)2 � 1.
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Thus in the case of ατ large, S is small relative to pi/2 because S is smaller
than a few units times B, with B much smaller than pi/2. In the case of ατ
small, S is small relative to pi/2 because S is of the order of (ατ)2B, with B of
the order of pi/2. Then this justi�es the assumption that only the �rst term of
the sum matters:

pi '
1

N
pi/2 exp (−ατ (i− 1)) .

We assume i = 2k, with k an integer. This is obviously true only for a very
restricted set of i, but however this still yields an approximation for how the
distribution depends on i for large i. Then, by recursion,

pi '
1

N k
p1 exp

(
−ατ

(
i(1 + 1/2 + 1/22 + ...+ 1/2k−1)− k

))
.

If i is large enough, 1 + 1/2 + 1/22 + ...+ 1/2k−1 ' 2. Remembering that k was
de�ned as i = 2k, the result is:

pi ' p1i
ατ−log(N)

log(2) exp (−2ατi) .

When ατ � 1, links typically break before the next replication, thus there is
little impact of the clustering on the growth. Consequently, the growth will be
close to its value in the absence of clustering, i.e. doubling every τ , and thus in
this limit N = 2:

pi ' p1i
ατ

log(2)
−1 exp (−2ατi) .

This rough approximation allows to explain the core of the observed distribution.

E Model with force-dependent breaking rate

E.1 Model and equations

A link between bacteria may consist of several sIgA bonds, and the number of
bound sIgA may not be exactly the same from one inter-bacteria link to the
next, but as sIgA are likely well mixed, many per bacteria and that bacteria are
similar to each other, let us assume that link heterogeneity is negligible. The
links could break if there was some process degrading the sIgA, but the sIgA
are thought to be very stable[6]. Another possible explanation for link breaking
is that the antigen get extracted from the bacterial membrane, at a rate which
may depend exponentially with the force applied on the link[7][8]. If the forces
are produced by the bacteria themselves (such as by �agella rotation), there are
likely to �uctuate on timescales which are short compared to the time between
two bacterial replications, and their distribution is likely to be the same for all
links, so it would be appropriate to model their e�ect as a �xed breaking rate,
the same for all the links. Another force is the hydrodynamical force exerted
by the �ow on the bacterial chain.

The �ow in the digestive system is complex and not precisely characterized.
Longer bacterial chains may also bend and their shape have complex interactions
with the �ow. Here, we present the simplest model taking into account the forces
exerted by the �ow on the link breaking rate. We aim to capture the main
plausible e�ects of the �ow when the link breaking rate is force-dependent.
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Figure F: Schematic of the forces applied to the chain. A We assume a straight

chain of beads with no hydrodynamic interactions between them. BWe substract the

average force to put ourselves in the referential of the center of the chain, as the total

force will translate the whole chain and not impact on the forces on the links. We

focus on the forces parallel to the chain that will impact the tension between the links.

C Sum of the forces on each bead, for chains with even and odd number of beads.

Let us take a linear chain ofN bacteria, each of length B. Let us approximate
it by a rigid chain with beads linked by straight rods of length B (pannel A of
�gure F). Let us assume that the rods are in�nitely thin so they do not interact
with the �ow, and let us neglect the hydrodynamical interaction between the
beads, so they each are subject to the same frictional force for a given �uid
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velocity, and, given that the typical Reynolds numbers in the digestive tract are
relatively low[9], then the viscous force on each bead is proportional to the �ow
velocity.

Then, let us assume that the velocity gradient in the �uid is constant around
the chain. The rationale for this approximation is that the typical scales of the
�ow are of the order of the centimeter / millimeter (for instance in a mouse,
the cecum typical size is in the cm range), much larger than typical bacterial
chains (the length of one bacteria is about 2µm, so even chains of dozens of
bacteria remain small compared to the typical �ow scale), thus we take a linear
approximation of the velocity �eld in the vicinity of a bacterial chain.

Then, if we take the sum of the forces on the whole chain, it will be equal
on mN multiplied by the acceleration of the center of mass of the chain, with
m the mass of each bead. When all the beads move together, there is no force
on the links, thus let us take the referential relative to the center of the chain,
and subtract the mean force on each bead (panel B of �gure F). Then, there
remain forces perpendicular to the axis of the chains, and forces parallel to the
axis of the chain. The forces perpendicular to the axis of the chain will make it
rotate, and as they are perpendicular, they have no e�ect on the tension on the
rods. Then, let us consider only the forces parallel to the chain.

In the example portrayed here, the chain is elongated. The reverse could
happen, but in this case, the chain would likely buckle, and the force applied on
the links would be small. The �ow varies considerably in time, due to peristaltic
motions[10][9]. There would be moments with no force and little breaking, and
moments with larger forces and more breaking. The �ow due to peristaltic
motions changes on time scales short compared to the typical bacterial division
time, thus we will assume that periods of low breaking and high breaking rates
will be equivalent to an average e�ective breaking rate. Then let us consider
the case of elongation only, as portrayed here.

As we assume here that the velocity gradient is constant, the relative �uid
velocity grows linearly with the distance from the center of mass of the chain.
Then the force on each bead is equal to F0 multiplied by the distance to the
center divided by B. We assume, following [7][8], that the breaking rate is
dependent on the force. Thus, we de�ne α and β such that the breaking rate
of a link is α exp(βF/F0) if a force F is applied to the link. In the limit of
small force, the breaking rate will be α, the same for all links, as in the base
model. β is some constant caracterizing how much the stability of the link is
force-dependent.

We can write the force on each bead (pannel C of �gure F). Then, here,
because the chain is rigid and straight, the sum of the forces on each bead has
to be zero. The tension on the outermost link will simply be equal to the �ow
force on the outermost bead, i.e. F0 multiplied by its distance to the center
divided by B, i.e. (N−1)/2 (both for chains of odd and even number of beads).
On the next link, the tension has to compensate for the �ow force on the second
bead, plus the tension applied by the outermost link. Thus the tension on this
link is F0((N−1)/2+(N−1)/2−1), and so forth (this is analogous to modelling
of breaking of polymer chains in elongational �ows, as in[11]).

For N even, the force on the jth link starting from the outermost link will
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be:

Fjth link,N even = F0

N/2∑
k=N/2−j+1

(k − 1/2)

Using
∑n
i=1 i = n(n+ 1)/2, it can be rewritten as:

Fjth link,N even = F0

(
N2

8
− (N − 2j)2

8

)
.

There are two links jth away from the extremities, for j from 1 to N/2 − 1,
and one central link, for which j = N/2. The breaking rate of a given link is
α exp(βF/F0) with F the total force applied to the link. Then the total breaking
rate of one chain of length N even is:

α exp

(
βN2

8

)1 + 2

N/2∑
k=2

exp

(
−β

2
(k − 1)2

) . (S1)

An outermost link of a chain of length N + 1 (with N even, N + 1 is odd)
breaks at rate α exp(βN/2). There are two such links for each chain. This and
equation (S1) lead to equation (30) of the main text:

dni
dt

= −rini−αni exp

(
βi2

8

)1 + 2

i/2∑
k=2

exp

(
−β

2
(k − 1)2

)+r(i−1)ni−1+2αni+1 exp

(
βi

2

)

For N odd, the force on the jth link starting from the outermost link will
be:

Fjth link,N odd = F0

(N−1)/2∑
k=(N−1)/2−j+1

k.

Simiarly to the N even case, we can rewrite:

Fjth link,N odd = F0

(
N2

8
− (N − 2j)2

8

)
Because of the two sides, there are two links j for each chain, for j from 1 to
(N − 1)/2. The breaking rate of a given link is α exp(βF/F0) with F the total
force applied to the link. Then the total breaking rate of one chain of length N
odd is:

2α exp

(
βN2

8

) (N−1)/2∑
k=1

exp

(
−β

2

(
k − 1

2

)2
)

(S2)

An outermost link of a chain of length N+1 (with N odd, N+1 is even) breaks
at rate α exp(βN/2). There are two such links for each chain. Then, this and
equation (S2) lead to equation (31) of the main text for the evolution in time
of the mean number of chains of odd length i:

dni
dt

= −rini−2αni exp

(
βi2

8

) (i−1)/2∑
k=1

exp

(
−β

2

(
k − 1

2

)2
)

+r(i−1)ni−1+2αni+1 exp

(
βi

2

)
.
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E.2 Additional �gure for the force-dependent model: repli-

cation rate maximizing the growth rate as a function

of β

Figure G shows that the rate of replication maximizing the growth rate of free
bacteria increases exponentially with β, which represent the strength of the
dependence of the breaking rate on the force applied to the link.

Figure G: Log of the value of r/α maximizing the growth rate in the force-dependent

breaking rate model as a function of β. The points are numerical maximums, the line

is 1.09× exp(0.8β). 1.09 is the value of (r/α) maximizing the growth rate for the base

model (i.e. for β → 0).

E.3 Force-dependent model: approximation for the chain

length distribution.

We start from equations (30) and (31), and assume that for t long enough,
ni ' Cpi exp(λt) (with λ the largest eigenvalue). Then,

λpi = −ripi − αpi exp(βi2/8)X + r(i− 1)pi−1 + 2αpi+1 exp(βi/2) (S3)

with X = 1 + 2
∑i/2−1
j=1 exp(−βj2/2) (i even) or X = 2

∑(i−1)/2
j=1 exp(−β(j −

1/2)2/2) (i odd). Let us now determine which terms dominate in this expression.
For i large enough, λ� ri. Thus λpi is negligible relative to ripi.
For both i even and odd, X is a converging sum which tends to a �nite

number when i increases. Let us denote its limit Y = 1+2
∑∞
j=1 exp(−βj2/2) =

θ3(0, exp(−β/2))) in the even case, and Z = 2
∑∞
j=1 exp(−β(j − 1/2)2/2) =

θ2(0, exp(−β/2))) in the odd case, with θi the Jacobi Theta functions. Thus,
because β is positive, for i large enough, ri� α exp(βi2/8)X.

The remaining main terms in equation (S3) are:

−αpi exp(βi2/8)X + r(i− 1)pi−1 + 2αpi+1 exp(βi/2) ' 0.
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The �rst term is negative, the two others are positive. Then we have to deter-
mine which of r(i−1)pi−1 and 2αpi+1 exp(βi/2) dominates. If 2αpi+1 exp(βi/2)
dominates, αpi exp(βi2/8)X ' 2αpi+1 exp(βi/2), thus pi+1/pi ' exp(βi(i/8 −
1/2))X, which for i large enough means that the long the chain, the more
of it, which would diverge and does not make sense in this system. Thus
αpi exp(βi2/8)X ' r(i− 1)pi−1,

ni
ni−1

→ pi
pi−1

' r

α

i− 1

X
exp

(
−β i

2

8

)
. (S4)

This approximation is valid for large chain sizes. We assume that it is valid
for any chain length. As this expression is small and decreasing quickly with
increasing i, p1 will be close to 1. Then, as:

pi
p1

= Πi
j=2

pj
pj−1

,

and using the known expression for the sum of the squares
∑i
j=1 j

2 = (n +

3n2 + 2n3)/6 and expression (S4):

pi,even '
( r
α

)i−1 (i− 1)!

Y i/2Zi/2−1
exp

(
−β

8

(
−1 +

i+ 3i2 + 2i3

6

))

pi,odd '
( r
α

)i−1 (i− 1)!

Y (i−1)/2Z(i−1)/2 exp

(
−β

8

(
−1 +

i+ 3i2 + 2i3

6

))
These two equations can be combined, and ultimately lead to:

pi '
( r
α

)i−1 (i− 1)!

Y floor(i/2)Zfloor((i−1)/2)
exp

(
−β

8

(
−1 +

i+ 3i2 + 2i3

6

))

E.4 Additional �gure for the force-dependent model: chain

length distribution for other values of r/α

In panel 2J of the main text, we represented the distribution of chain lengths
in the model with force-dependent link breaking rate for r/α = 1. In �gure H
we represent the distributions for di�erent values of r/α. Overall, the shapes
are similar, and the smaller r/α is (as well as the larger β is), the better the
analytical approximation works.
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Figure H: Chain length distribution, as in �gure 2J, except for the value of r/α: model

with force-dependent breaking rates. Each color represents a di�erent β: β = 0.01

(nmax = 20), β = 0.1 (nmax = 15), β = 0.2 (nmax = 15), β = 0.5 (nmax = 15), β = 1

(nmax = 15), β = 2 (nmax = 10), β = 3 (nmax = 10). The black dashed lines are the

numerical results for the base model, equivalent to β = 0. The curves for β = 0.01

(dark green) are almost overlaid with the curves for β = 0. The colored dotted lines

the analytical approximation (equation (18) of the main text), and the black dotted

line the approximation for the base model (equation (5) of the main text).
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F Zoomed-in distribution for all models

Figure I represents the zoomed-in chain length distributions of the right panels
of �gure 2 of the main text.
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Figure I: Zoomed-in chain length distributions: everything as in the right panels
of �gure 2 of the main text, but centered on the head of the distributions. Solid
lines and open circles: numerical results. Base model: nmax = 40, dotted
lines: approximation (5) of the main text (almost overlaid with the numerical
results for r/α = 0.1). Model with bacterial escape: δ = δ′ = δ′′ = 0,
0.1, 0.2, 0.3, c = c′ = 0, nmax = 40. Dotted lines: approximation (9) of the
main text. Fixed time between replications: reff = log(2)/τ , nmax = 32.
Approximation (18) (dashed lines), numerical result in the base model (dotted
lines). r/α = 0.2, 0.5, 1, 2, 5. Model with linear chains independent after

breaking: nmax = 100. The dotted black lines are the approximate distribution
(27) of the main text for each r/α, which is the exact distribution for q = 1. The
colors represent q =β = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. All curves
are almost overlaid for small r. Model with force-dependent breaking

rates: chain length distribution for r/α = 1. Each color represents a di�erent
β: β = 0.01 (nmax = 20), β = 0.1 (nmax = 15), β = 0.2 (nmax = 15), β = 0.5
(nmax = 15), β = 1 (nmax = 15), β = 2 (nmax = 10), β = 3 (nmax = 10). The
colored dotted lines the analytical approximation (18) of the main text, and the
black dotted line the approximation (5) of the main text for the base model.

15



G Experimental data

G.1 Methods

We perform a new analysis on images that were produced for [4]. We brie�y
describe below the experiments from which the images were produced, and
describe our analysis.

Mice, which were previously vaccinated with a peracetic-acid inactivated
S.Typhimurium strain (PA-S.Tm), were pretreated with 0.8g/kg ampicillin sodium
salt in sterile PBS. 24h later, mice received 105 CFU of a 1:1 mix of mCherry-
(pFPV25.1) and GFP-(pM965) expressing attenuated S. Tm M2702. For imag-
ing, cecum content was diluted gently 1:10 w/v in sterile PBS containing 6µg/ml
chloramphenicol to prevent growth during imaging. 200µl of the suspension
were transferred to an 8-well Nunc Lab-Tek Chambered Coverglass (Thermo
Scienti�c) and imaged at 100x using the Zeiss Axiovert 200m microscope. To
determine the distribution of bacteria in aggregates, n=25 high power �elds per
mouse were randomly selected and imaged for mCherry and GFP �uorescence.
For some mice, sequential sampling was done, these mice were terminally anaes-
thetised and arti�cially respirated cecum content was sampled by tying o� part
of the cecum each hour for 3h. More details about the experimental procedures
can be found in [4].

We analyzed all the images for the early data points (4 and 5 hours) of
experiments starting from a low inoculum (105), to minimize the clustering from
random encounters. Only the linear chains were counted. Images are for the red
and green �uorescence, so complex clusters with two colors were not counted.
The data were analyzed manually. The images are available as supplementary
materials:

• File S1 images4h.zip contains the images for 3 of the mice only sampled
at 4h.

• File S2 images4h_others.zip contains the images for the other 4 mice only
sampled at 4h.

• File S3 images5h.zip contains the images of the mice only sampled at 5h

• File S4 imagesseq4h.zip contains the images at 4h of mice sampled sequen-
tially

• File S5 imagesseq5h.zip contains the images at 5h of mice sampled sequen-
tially

.

G.2 Results

For linear chains, we obtained the length distribution detailed in table 1 and
shown on �gure 4 of the main text.

Given the bumpy shape of the experimental distribution, we chose to �t the
data with the �xed replication time model for the �gure 4 of the main text.
In this model, the only adjustable parameter is reff/α. For a given reff/α,
we obtain the theoretical chain length distribution pi by numerical resolution
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chain length 4h PI o 4h PI s 5h PI o 5h PI s total
(7 mice) (2 mice) (4 mice) (2 mice)

2 21 30 17 38 106
3 22 4 9 5 40
4 51 9 25 9 94
5 7 0 1 3 11
6 5 3 3 4 15
7 10 1 5 3 19
8 12 0 4 3 19
9 1 0 0 0 1
10 1 0 0 1 2
11 1 0 0 0 1
12 0 0 1 1 2
13 0 0 1 1 2
14 0 0 1 0 1

Table 1: Table of the linear chains counted on the images from several exper-
iments, either with mice sampled once (o), or with mice sampled sequentially
(s).

of the equations. As the data concerns only chains of length 2 and longer, we
renormalize this distribution as pi/(1 − p1). Then, the likelihood observing k2

chains of length 2, k3 chains of length 3, ... ki chains of length i is Π∞i=2

(
pi

1−p1

)ki
multiplied by a combinatorial factor dependent only on the ki, to express the
number of possible ways to choose k2, k3, ... ki, ... among the total number of
clusters observed. Thus the log-likelihood is equal to:

log(likelihood) =

∞∑
i=2

ki log

(
pi

1− p1

)
+ constant(independent of reff )

In practice, here, there are no clusters observed longer than imax = 14. We
compute numerically this log-likelihood as a function of reff (pi depends on
reff ). The value of reff maximizing the log likelihood is 4.1.

A con�dence interval of 95% can be approximated by the interval of reff for
which the di�erence between the log likelihood and its maximum is less than
1.92 [12]. This results in a con�dence interval of 3.7 ≤ reff ≤ 4.6.

To quantify our impression that there are fewer long chains observed than
expected, we performed the following calculations. Taking reff/α = 4.1 and
Nexp = 313, the expected number of chains of length 15 or longer is 3.7, whereas
none is observed, which for a multinomial distribution has a probability ' 0.024
to occur.This probability seems low. Either this is a low probability but still
happened (and if we look at a bit shorter chains, the expected average number
of chains of length 9 and longer is 11.7, and 9 of them are actually observed,
which is relatively close); or there is some process limiting the number of long
chains. There are two main possibilities for the number of long chains to be
limited: there could be an experimental bias limiting the observation of long
chains (see discussion below); or there could be some force-dependence of the
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breaking rates, which would e�ectively act as a cut-o� for the chain length (see
�gure 3 of main text), as in this case, breaking rates increase considerably with
chain length.

G.3 Discussion

The data may be biased. The mass of one bacterium is about one pg, and its
density is about 10% more than the water density[13, 14], the thermal energy at
ambient temperature is of the order of 4.10−21J , and gravity g is of the order of
10m/s2, thus thermal �uctuations will lift an individual bacterium by typically
4 µm higher than the bottom. Thermal �uctuations will have two e�ects:

• The average height of the center of gravity of chains will decrease with their
length. This is confocal microscopy, which typical optical section is less
than 1µm, focused close to the cover slip. This may bias the distribution
by missing smaller chains.

• Longer chains are not rod-like, their shape �uctuate. It is apparent on the
microscopy images that parts of long chains may get out of focus. The
longer the chain, the less likely that it is entirely in the focus, and thus
chains will look smaller than they are.

We focus on the chain length distribution because this quantity is more easily
accessible by experimental measurements, at the end of an experiment. Com-
paring models and experiments enables to check whether the data is compatible
with a process of growing and breaking of clusters; and determine which speci�c
model is closest to the data. However, some models cannot be distinguished,
no matter how much data is available for the chain length distribution. For
example in the model with bacterial escape and the model where chains can
remain independent after breaking, there are two parameters to �t (r/α and δ,
or r/α and q). It is likely that �tting would mainly select a value for r/α, since
the distribution does not depend much on the second parameter in both cases.
These models could not be distinguished from the base model. On the other
hand, models with di�erent distribution shapes � either in the force-dependent
model or in the �xed division time one� could be distinguished, provided that
the bias can be overcome, and that more data can be collected.
We could �t the �xed replication time model to the data, and this strengthened
our hypothesis that the chains are generated by a process of enchained growth
and link breaking. However, there is somewhat less long chains observed than
expected (especially in the range of lengths 14 to 16). One possibility could be
that the breaking rate is force dependent. If we had 10 times more of unbi-
ased data, we could answer whether there really is a de�cit of longer chains. If
there is indeed a de�cit of longer chains, then we should combine the model of
force-dependent breaking rates with the model with �xed replication time, to be
able to make quantitative comparisons. To be more e�ective, comparison would
likely require more data, as there would be two free parameters, r/α and β. If
there is no de�cit of longer chains in the range up to 16, then the simple model
with �xed replication time predicts that we would get access to the distribution
up to length 24 (and be at the limit for lengths 28 and 32) with 100 times
more data than in current experiments (see �gure J). Thus overall we would
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need at least 10 times and likely 100 times more data for a more quantitative
assessment.
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Figure J: Comparison of chain length distribution for the experimental data (black)

and the model with �xed replication time (red). This �gure is as �gure 4 of main text,

but extended up to length 36. The black dashed line represents limit of one chain in

the data. The black dot-dashed line represents what this limit would be if there was

10 times more data, and the black dotted line represents what this limit would be if

there was 100 times more data. reff/α = 4.1 (with reff/α = log(2)/(ατ)).

Increasing the amount of data would not necessarily require to sacri�ce more
mice, but merely to take more images for each cecum content. The challenge
would be to do so with no bias, and with very standardized conditions so that
the images are taken in conditions close enough so as to automate the chain
detection and length count.

It would be also very useful if there would be ways to estimate the break-
ing rate in independent experiments, for instance injecting (without breaking
them nor perturbing the system) chains of non-replicating bacteria of controlled
length, and measuring how the length distribution changes over time. Then,
as the replication rate can be estimated by other measures (dilution of non-
replicating plasmids), we could get an estimate of the replication rate over the
breaking rate, which would considerably constrain the �tting of the chain length
distribution, and thus give more strength to the conclusions achieved.
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