Pseudocode outline of the simulation algorithm:

input contact network G, transmission rate β, average infectious period τ_I, number of initially infected nodes I_0, payoff parameters a, b, c, d, e, f, g, h.

initialize state of all nodes as susceptible

draw I_0 nodes at random and set their state to infected

compute the no. of nodes with states susceptible (S), infected (I), recovered (R), vaccinated (V)

while I not equal to 0

- **compute** f_p and f_i for each agent
- **compute** $U_{uv}, U_{vv}, U_{vn}, U_{nn}$ for each agent
- **label** all possible events [infection ($S \rightarrow I$), recovery ($I \rightarrow R$), vaccination ($S \rightarrow V$)] that can take place in the current round
- **compute** the propensities for each event: $P(S \rightarrow I)$, $P(I \rightarrow R)$, $P(S \rightarrow V)$
- **call** random number generator
- **compute** the time interval δt between the current and the subsequent event
- **call** random number generator
- **determine** the next event E based on propensities
- **update** $t \rightarrow t + \delta t$
- **perform** the event E
- **update** the no. of nodes with states S, I, R, V

output cumulative number of infected and vaccinated nodes in the network.