S4 Appendix: Prior distributions

Prior for $\Delta G_{\tau}^{\ddagger}$, which governs the rates of translocation

RNAP/pol II: to select a prior for $\Delta G_{\tau}^{\ddagger}$ we simulated transcription on the *rpoB* gene under Model 3 – the simplest binding equilibrium model. $\Delta G_{\tau}^{\ddagger}$ and k_{cat} were sampled uniformly from a relevant range, with K_D held constant at 100 μM and [NTP] = 1000 μM . For each simulation, the mean elongation velocity was calculated. The results are displayed in S1 Fig.

This plot shows that as the energy barrier of translocation $(\Delta G_{\tau}^{\ddagger})$ increases, the velocity decreases. If $\Delta G_{\tau}^{\ddagger} \gtrsim 8 k_B T$ then it becomes impossible to achieve a realistic mean velocity, providing a relatively clear upper bound on this parameter. If $\Delta G_{\tau}^{\ddagger} \lesssim 3 k_B T$ then translocation becomes very rapid and the same distribution of velocities is obtained in simulations, irrespective of the exact value of $\Delta G_{\tau}^{\ddagger}$. In this case catalysis becomes strongly rate-limiting, and it would be appropriate to apply a partial equilibrium approximation to the translocation step. This provides an effective lower bound for parameter $\Delta G_{\tau}^{\ddagger}$. Therefore we centered our prior distribution for $\Delta G_{\tau}^{\ddagger}$ in this interval (a normal distribution with a mean of 5.5 and a standard deviation of 0.97, so that the central 99% interval is (3, 8)).

T7 pol: the same analysis was performed, however with $\Delta G_{\tau}^{\ddagger}$ at its prior mean of $-3.3 k_B T$ (S1 Fig).

Prior for k_{bind} , which governs the rate of NTP binding

To select a prior for k_{bind} we performed similar simulations, but instead used Model 2 – the simplest kinetic binding model. k_{bind} and k_{cat} were sampled uniformly from relevant ranges, K_D was set to 100 μ M and [NTP] = 1000 μM . (S1 Fig).

Depending on the exact value of k_{cat} , if $k_{bind} \leq 0.1 \ \mu \text{M}^{-1} \text{ s}^{-1}$, then it is impossible to achieve a realistic velocity, providing a relatively clear lower bound on this parameter. If $k_{bind} \geq 5 \ \mu \text{M}^{-1} \text{ s}^{-1}$ then binding becomes very rapid and the same distribution of velocities is obtained in simulations, irrespective of the exact value of k_{bind} . Again this is because catalysis becomes strongly rate limiting in this region, and it would be appropriate to apply a partial equilibrium approximation to the binding step. Hence we centered our (lognormal) prior around the interval (0.01, 5) – the conservatively selected bounds reflecting that the experimental data has been collected at differing NTP concentrations, altering the rate. Performing the same analysis with different parameters gave us a similar prior.

Prior distribution related to rate of NTP release

A model is non-identifiable if two or more parameterisations can produce the same output. Our preliminary results suggested non-identifiability between $\frac{k_{rel}}{k_{bind}}$ and k_{bind} (S1 Fig). When k_{bind} is low (and hence binding is rate-limiting), there is an approximately linear relationship between $\frac{k_{rel}}{k_{bind}}$ and k_{bind} . As k_{bind} increases from 0, the dissociation constant $\frac{k_{rel}}{k_{bind}}$ must also increase in order for the system to achieve the same velocity. However, as binding comes closer to achieving equilibrium, $\frac{k_{rel}}{k_{bind}}$ converges. Most previous estimates of K_D have assumed binding to be at equilibrium. This assumption restrains the values which K_D may take, and subsequently estimates for K_D are typically in the order of $10^1 - 10^2 \ \mu$ M. However for a model in which binding is slow it is expected that estimates of $\frac{k_{rel}}{k_{bind}}$ can be lower. This has indeed been demonstrated by Mejia et al. 2015 [1] who estimated $\frac{k_{rel}}{k_{bind}}$ to be 0.6 μ M. Therefore the prior distribution for $\frac{k_{rel}}{k_{bind}}$ must permit both of these binding models to be tested fairly during Bayesian inference. We centered our lognormal prior for $\frac{k_{rel}}{k_{bind}}$ around a very broad range, with a central 95% interval of (0.2, 200). It is noted that selecting a prior distribution which does not discriminate

It is noted that selecting a prior distribution which does not discriminate between the kinetic and equilibrium binding models *a priori* may not be plausible.

References

[1] Mejia YX, Nudler E, Bustamante C. Trigger loop folding determines transcription rate of Escherichia coli's RNA polymerase. Proceedings of the National Academy of Sciences. 2015;112(3):743–748.