
S4 Appendix: Prior distributions

Prior for ∆G‡τ , which governs the rates of translocation

RNAP/pol II: to select a prior for ∆G‡τ we simulated transcription on the
rpoB gene under Model 3 – the simplest binding equilibrium model. ∆G‡τ and
kcat were sampled uniformly from a relevant range, with KD held constant at
100 µM and [NTP] = 1000 µM . For each simulation, the mean elongation
velocity was calculated. The results are displayed in S1 Fig.

This plot shows that as the energy barrier of translocation (∆G‡τ ) in-
creases, the velocity decreases. If ∆G‡τ & 8 kBT then it becomes impossible to
achieve a realistic mean velocity, providing a relatively clear upper bound on
this parameter. If ∆G‡τ . 3 kBT then translocation becomes very rapid and
the same distribution of velocities is obtained in simulations, irrespective of
the exact value of ∆G‡τ . In this case catalysis becomes strongly rate-limiting,
and it would be appropriate to apply a partial equilibrium approximation to
the translocation step. This provides an effective lower bound for parameter
∆G‡τ . Therefore we centered our prior distribution for ∆G‡τ in this interval
(a normal distribution with a mean of 5.5 and a standard deviation of 0.97,
so that the central 99% interval is (3, 8)).

T7 pol: the same analysis was performed, however with ∆G‡τ at its prior
mean of −3.3 kBT (S1 Fig).

Prior for kbind, which governs the rate of NTP binding

To select a prior for kbind we performed similar simulations, but instead used
Model 2 – the simplest kinetic binding model. kbind and kcat were sampled
uniformly from relevant ranges, KD was set to 100 µM and [NTP] = 1000
µM . (S1 Fig).

Depending on the exact value of kcat, if kbind . 0.1 µM−1 s−1, then it is
impossible to achieve a realistic velocity, providing a relatively clear lower
bound on this parameter. If kbind & 5 µM−1 s−1 then binding becomes
very rapid and the same distribution of velocities is obtained in simulations,
irrespective of the exact value of kbind. Again this is because catalysis becomes
strongly rate limiting in this region, and it would be appropriate to apply a
partial equilibrium approximation to the binding step. Hence we centered our
(lognormal) prior around the interval (0.01, 5) – the conservatively selected
bounds reflecting that the experimental data has been collected at differing
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NTP concentrations, altering the rate. Performing the same analysis with
different parameters gave us a similar prior.

Prior distribution related to rate of NTP release

A model is non-identifiable if two or more parameterisations can produce the
same output. Our preliminary results suggested non-identifiability between
krel
kbind

and kbind (S1 Fig). When kbind is low (and hence binding is rate-limiting),

there is an approximately linear relationship between krel
kbind

and kbind. As kbind

increases from 0, the dissociation constant krel
kbind

must also increase in order for
the system to achieve the same velocity. However, as binding comes closer to
achieving equilibrium, krel

kbind
converges. Most previous estimates of KD have

assumed binding to be at equilibrium. This assumption restrains the values
which KD may take, and subsequently estimates for KD are typically in the
order of 101 - 102 µM. However for a model in which binding is slow it is
expected that estimates of krel

kbind
can be lower. This has indeed been demon-

strated by Mejia et al. 2015 [1] who estimated krel
kbind

to be 0.6 µM. Therefore

the prior distribution for krel
kbind

must permit both of these binding models to
be tested fairly during Bayesian inference. We centered our lognormal prior
for krel

kbind
around a very broad range, with a central 95% interval of (0.2, 200).

It is noted that selecting a prior distribution which does not discriminate
between the kinetic and equilibrium binding models a priori may not be
plausible.
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