S4 Appendix: Prior distributions

Prior for $\Delta G_{\tau}^{\ddagger}$, which governs the rates of translocation

RNAP/pol II: to select a prior for $\Delta G_{\tau}^{\ddagger}$ we simulated transcription on the rpo B gene under Model 3 - the simplest binding equilibrium model. $\Delta G_{\tau}^{\ddagger}$ and $k_{\text {cat }}$ were sampled uniformly from a relevant range, with K_{D} held constant at $100 \mu M$ and $[\mathrm{NTP}]=1000 \mu M$. For each simulation, the mean elongation velocity was calculated. The results are displayed in S1 Fig.

This plot shows that as the energy barrier of translocation $\left(\Delta G_{\tau}^{\ddagger}\right)$ increases, the velocity decreases. If $\Delta G_{\tau}^{\ddagger} \gtrsim 8 k_{B} T$ then it becomes impossible to achieve a realistic mean velocity, providing a relatively clear upper bound on this parameter. If $\Delta G_{\tau}^{\ddagger} \lesssim 3 k_{B} T$ then translocation becomes very rapid and the same distribution of velocities is obtained in simulations, irrespective of the exact value of $\Delta G_{\tau}^{\ddagger}$. In this case catalysis becomes strongly rate-limiting, and it would be appropriate to apply a partial equilibrium approximation to the translocation step. This provides an effective lower bound for parameter $\Delta G_{\tau}^{\ddagger}$. Therefore we centered our prior distribution for $\Delta G_{\tau}^{\ddagger}$ in this interval (a normal distribution with a mean of 5.5 and a standard deviation of 0.97, so that the central 99% interval is $(3,8)$).

T7 pol: the same analysis was performed, however with $\Delta G_{\tau}^{\ddagger}$ at its prior mean of $-3.3 k_{B} T$ (S1 Fig).

Prior for $k_{\text {bind }}$, which governs the rate of NTP binding

To select a prior for $k_{\text {bind }}$ we performed similar simulations, but instead used Model 2 - the simplest kinetic binding model. $k_{b i n d}$ and $k_{c a t}$ were sampled uniformly from relevant ranges, K_{D} was set to $100 \mu \mathrm{M}$ and $[\mathrm{NTP}]=1000$ μM. (S1 Fig).

Depending on the exact value of $k_{\text {cat }}$, if $k_{b i n d} \lesssim 0.1 \mu \mathrm{M}^{-1} \mathrm{~s}^{-1}$, then it is impossible to achieve a realistic velocity, providing a relatively clear lower bound on this parameter. If $k_{\text {bind }} \gtrsim 5 \mu \mathrm{M}^{-1} \mathrm{~s}^{-1}$ then binding becomes very rapid and the same distribution of velocities is obtained in simulations, irrespective of the exact value of $k_{\text {bind }}$. Again this is because catalysis becomes strongly rate limiting in this region, and it would be appropriate to apply a partial equilibrium approximation to the binding step. Hence we centered our (lognormal) prior around the interval $(0.01,5)$ - the conservatively selected bounds reflecting that the experimental data has been collected at differing

NTP concentrations, altering the rate. Performing the same analysis with different parameters gave us a similar prior.

Prior distribution related to rate of NTP release

A model is non-identifiable if two or more parameterisations can produce the same output. Our preliminary results suggested non-identifiability between $\frac{k_{r e l}}{k_{\text {bind }}}$ and $k_{b i n d}$ (S1 Fig). When $k_{b i n d}$ is low (and hence binding is rate-limiting), there is an approximately linear relationship between $\frac{k_{\text {rel }}}{k_{b i n d}}$ and $k_{b i n d}$. As $k_{b i n d}$ increases from 0 , the dissociation constant $\frac{k_{r e l}}{k_{\text {bind }}}$ must also increase in order for the system to achieve the same velocity. However, as binding comes closer to achieving equilibrium, $\frac{k_{r e l}}{k_{b i n d}}$ converges. Most previous estimates of K_{D} have assumed binding to be at equilibrium. This assumption restrains the values which K_{D} may take, and subsequently estimates for K_{D} are typically in the order of $10^{1}-10^{2} \mu \mathrm{M}$. However for a model in which binding is slow it is expected that estimates of $\frac{k_{\text {rel }}}{k_{\text {bind }}}$ can be lower. This has indeed been demonstrated by Mejia et al. 2015 [1] who estimated $\frac{k_{\text {rel }}}{k_{\text {bind }}}$ to be $0.6 \mu \mathrm{M}$. Therefore the prior distribution for $\frac{k_{\text {rel }}}{k_{\text {bind }}}$ must permit both of these binding models to be tested fairly during Bayesian inference. We centered our lognormal prior for $\frac{k_{r e l}}{k_{b i n d}}$ around a very broad range, with a central 95% interval of $(0.2,200)$.

It is noted that selecting a prior distribution which does not discriminate between the kinetic and equilibrium binding models a priori may not be plausible.

References

[1] Mejia YX, Nudler E, Bustamante C. Trigger loop folding determines transcription rate of Escherichia coli's RNA polymerase. Proceedings of the National Academy of Sciences. 2015;112(3):743-748.

