
V1.0

Software Design Document

OpenCASA

Table of Contents

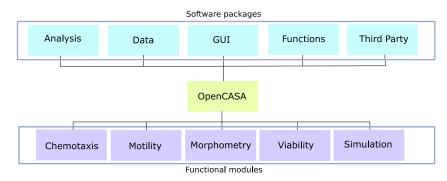
Introduction
Purpose1
Scope1
System Architecture2
Architectural Design2
Decomposition Description
Data Design4
Component Design
Algorithms
Automatic threshold
Object detection
Track identification7
Some useful activity diagrams8
Chemotaxis Analysis
Chemotaxis Index Analysis
Chemotaxis Experiment Analysis9
Chemotaxis Simulated Experiment Analysis9
Motility File Analysis10
Motility Folder Analysis10
Motility Multiple Folders Analysis10
Image analysis Window10

Introduction

Purpose

The purpose of this document is to provide an overall view of the OpenCASA software design and its implementation.

Scope


OpenCASA is an integrative project oriented to cell multi-analysis. The initial version has been designed to include five modules: motility, chemotaxis, viability, morphometry and simulation, but also to facilitate the inclusion of new modules:

- **Motility module** takes a video file (or multiple files) where a cell population has been recorded, tracks every cell along the video, and calculates different kinematic parameters for each track.
- **Chemotaxis module**, as motility module, takes a video file (or multiple files) where a cell population has been recorded, and analyses the bias in the directionality of the cells movement.
- **Viability module** allows the user to count different populations of stained cells according to their color (red or green) in sets of multiple images.
- **Morphometry module** allows the user to calculate different parameters related to cell morphometry in sets of images.
- **Simulation module** generates a video file of simulated cell populations that follow a persistent random walk model.

System Architecture

Architectural Design

The architecture has been designed to maximize the reutilization of code by different modules and to group different pieces of code in packages depending on their purpose.

The initial design has been thought to have five packages:

Package	Description
Analysis	This package includes code directly related to particular
	analysis of each module.
Data	This package includes the declaration of all data structures
	designed.
GUI	This package includes the code related to the graphical user
	interface.
Functions	This package includes generic functions that could be used by
	every module, i.e. statistical functions, video processing or
	drawing functions.
Third Party	This package has been designed to include and locate third
	party code used in the project.

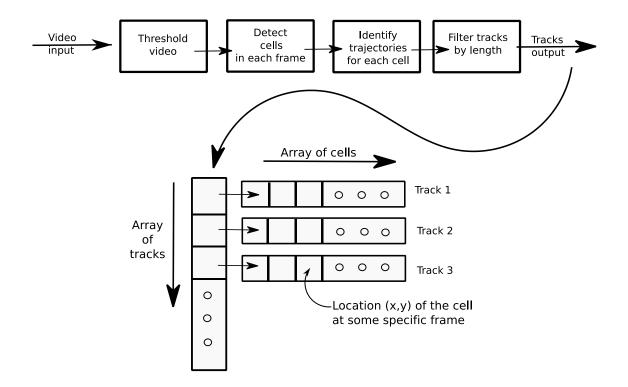
Decomposition Description

Here are explained in more detail all units included in each package (Data package will be explained in the following section):

Analysis Package	Description
Chemotaxis	This unit implements all functions related to chemotaxis
	analysis.
Motility	This unit implements all functions related to motility analysis.

Functions Package	Description
Computer Vision	This unit includes all functions related to image processing.
File Manager	This unit includes all functions used to manage files, directories,
	file names and file types.
Kinematics	This unit implements all methods used to analyse cell trajectories,
	like velocities or motility tests.
Paint	This unit includes all functions used to draw results on screen, like
	diagrams or trajectories over a video file.
Signal Processing	This unit includes a set of filters used to manipulate cell trajectories.
	For example, it includes a function to calculate the average path of
	a trajectory or to decimate when a high frame rate has been used to
	record the videos.
Trial Manager	This unit includes functions to extract trials from video files,
	simulate trials or to read/save trials from/to the file system.
Utils	This unit includes generic functions like dialogs or print tracks
	throw standard output.
Video Recognition	This unit includes all functions used to identify cell tracks over a
	video file.

GUI Package	Description
Chemotaxis Settings	This unit manages all the GUI elements used to show and set by
	the user all parameters involved in the chemotaxis analysis.
Image Analysis Window	This unit implements a generic window designed to image
	analysis. It includes various slide bars, buttons to navigate forward
	a backward, and a generic image area to show the current image.
Main Window	This unit implements the main window of the software. It includes
	a grid window with one button for each module available.
Morphometry Settings	This unit manages all the GUI elements used to show and set by
	the user all parameters involved in the morphometry analysis.
Morph Window	This unit inherits from Image Analysis Window and it is an
	adaptation to carry on morphometry analysis. Due to the type of
	analysis and the importance of the user interaction in this analysis,
	all functions for morphometry analysis are implemented here, and
	no specific file is included in Analysis package.
Motility Settings	This unit manages all the GUI elements used to show and set by
	the user all parameters involved in the motility analysis.
Settings Window	This unit integrates all settings from the different modules.
Viability Settings	This unit manages all the GUI elements used to show and set by
	the user all parameters involved in the viability analysis.
Viability Window	As Morph Window, this unit inherits from Image Analysis
	Window and it is an adaptation to carry on viability analysis. Due
	to the type of analysis and the importance of the user interaction in
	this analysis, all functions for viability analysis are implemented
	here, and no specific file is included in Analysis package.

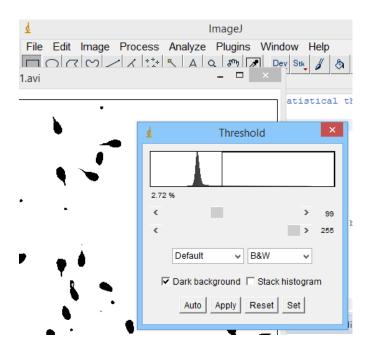

Data Design

The data structures included in data package are:

Data structure	Description
Chemotaxis Params	This unit reads and writes to file system all parameters involved
	in the chemotaxis analysis. This parameters can be modified in
	Settings Window.
Morphometry Params	This unit reads and writes to file system all parameters involved
	in the morphometry analysis. This parameters can be modified
	in Settings Window.
Motility Params	This unit reads and writes to file system all parameters involved
	in the motility analysis. This parameters can be modified in
	Settings Window.
Viability Params	This unit reads and writes to file system all parameters involved
	in the viability analysis. This parameters can be modified in
	Settings Window.
Params	This unit is used internally by the software to set the parameters
	used in the execution of a specific module. When the user selects
	any module, this unit is set with the specific configuration for
	this module.
Serializable List	This unit is an extension of a standard ArrayList in which has
	been added the Serializable interface, in order to serialize and
	store data into file system.
Cell	This unit encapsulates all relevant information about a cell.
Trial	This unit stores all relevant information about a single file:
	tracks, identifier, file type, etc.
Simulation	This unit implements a generic interface that all simulations has
	to maintain.
Oscillatory Walker	This unit implements a particular simulation. The simulated
	cells oscillate following a sinusoidal movement.
Persistent Random	This unit codifies a particular simulation. The simulated cells
Walker	behave according to a persistent random walk model.

Other important structure that commonly appears in video analysis is the one used to store trajectories. When a video is analyzed, a list of tracks is returned. Each track is represented as a list of Data.Cell where each object holds the location (x, y) of the real cell at some specific frame.

The workflow of a video analysis is represented in the following diagram:



Component Design

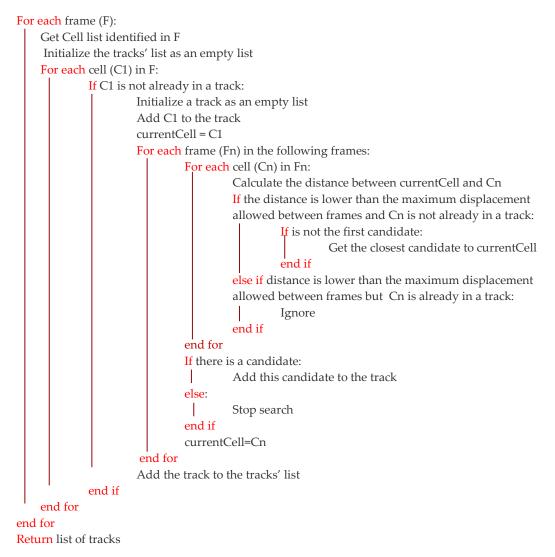
Algorithms

Automatic threshold

In video analysis, once the program has converter the input video to grayscale, a threshold is applied to differentiate the objects of interest (i.e. cells) from background. In a video converted to grayscale, each pixel has a value between 0 and 255. Supposing that there are more pixels related to background than to cells, the method implemented takes the histogram of gray pixels and calculates the mean and standard deviation of the distribution. The threshold is set to 2 times the standard deviation.

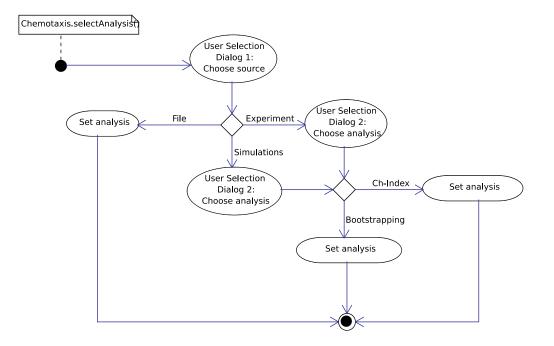
For image analysis, there is an option to calculate manually the threshold but also it is possible to apply the Otsu and Minimum automatic threshold methods.

Object detection

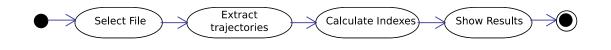

In order to detect objects in binary images it has been used the plugin ParticleAnalyzer included in ImageJ libraries.

More info at <u>https://imagej.nih.gov/ij/developer/api/ij/plugin/filter/ParticleAnalyzer.html</u>.

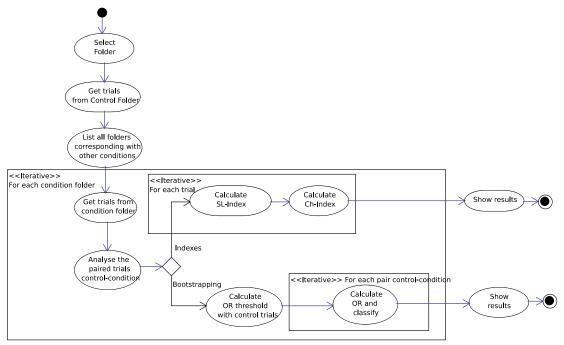
Track identification

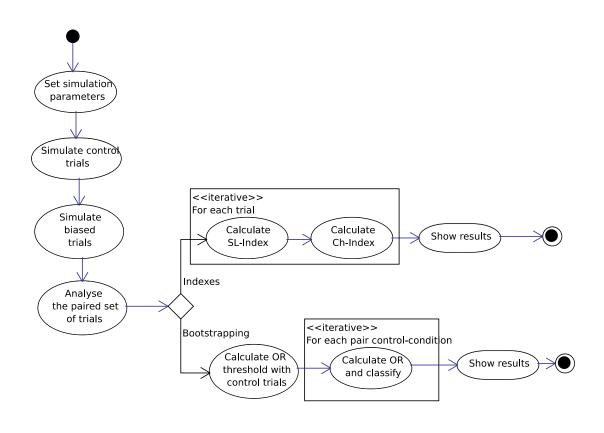

The algorithms used to detect and identify tracks are the same ones implemented by Jonas Wilson-Leedy and Rolf Ingermann in the original CASA plugin for ImageJ.

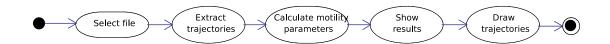
Cell detection		
Input: Video		
Output: For each frame, it returns a list of all cells detected and their (x, y) location.		
- Initialize Cells as an empty list.		
- For each video frame:		
1. Create an empty list		
2. Identify all cells and their locations in the frame and add each cell to the list		
3. Put the list into the last Cells index		
- Return Cells list		
Track identification		
Input: List of all cells for each frame (as list of lists)		
Output: List of tracks		

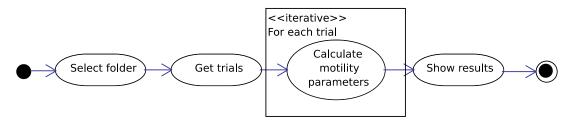


Some useful activity diagrams


Chemotaxis Analysis


Chemotaxis Index Analysis


Chemotaxis Experiment Analysis


Chemotaxis Simulated Experiment Analysis

Motility File Analysis

Motility Folder Analysis

Motility Multiple Folders Analysis

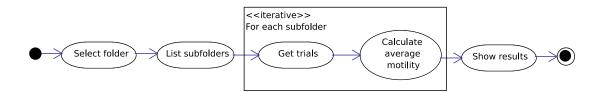
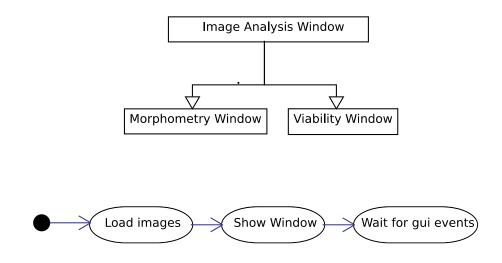



Image analysis Window

