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1 Ideal observer model derivation

Our derivation of the Bayesian online change-point detection algorithm for
the ideal observer generalizes that of Adams and MacKay [1]. For clarity and
ease of reference, we report here the full derivation; only the broad outline is
described in the main text.

1.1 Bayesian online change-point detection

The Bayesian observer estimates the posterior distribution over the current
run length, or time since the last change point, and the state (category prob-
abilities) before the last change point, given the data (category labels) ob-
served so far. We denote the length of the run at the end of trial t by rt.
Similarly, we denote with πt and ξt the current state and the state before the
last change point, both measured at the end of trial t. Here, πt represents
the probability that, on the subsequent trial, the category will be A (the
probability of category B is 1− πt). Both πt, ξt ∈ Sπ, where Sπ is a discrete
set of possible states. In the experiment, Sπ = {0.2, 0.35, 0.5, 0.65, 0.8}. We

use the notation C
(r)
t to indicate the set of observations (category labels)

associated with the run rt, which is Ct−rt+1:t for rt > 0, and ∅ for rt = 0. We
use the subscript colon operator Ct′:t to denote the sub-vector of C (the full
sequence of observed categories) with elements from t′ to t included.
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We write the predictive distribution of category by marginalizing over run
lengths rt and previous states ξt,

P (Ct+1|C1:t) =
∑

rt

∑

ξt

P (Ct+1|rt, ξt,C(r)
t )P (rt, ξt|C1:t). (S1)

We assume that, in the case of a change point at the end of trial t, the
new state might have Markovian dependence on the previous state, that is
πt ∼ P (πt|πt−1). This is a generalization of the model of Adams and MacKay
[1], in which the distribution parameters were assumed to be independent
after change points. In the experiment, P (πt|πt−1) =

1
|Sπ |−1

Jπt 6= πt−1K. We

use JAK to denote Iverson’s bracket which is 1 if the expression A is true, and
0 otherwise [2].

To find the posterior distribution (the second term in Eq S1)

P (rt, ξt|C1:t) =
P (rt, ξt,C1:t)

P (C1:t)
(S2)

we write the joint distribution over run length, previous state and observed
data recursively,

P (rt, ξt,C1:t) =
∑

rt−1

∑

ξt−1

P (rt, rt−1, ξt, ξt−1,C1:t)

=
∑

rt−1

∑

ξt−1

P (rt, ξt, Ct|rt−1, ξt−1,C1:t−1)P (rt−1, ξt−1,C1:t−1)

=
∑

rt−1

∑

ξt−1

P (rt, ξt|rt−1, ξt−1,C
(r)
t )

× P (Ct|rt−1, ξt−1,C
(r)
t−1)P (rt−1, ξt−1,C1:t−1).

(S3)

Note that the justification for specializing from C1:t to C
(r)
t and C

(r)
t−1 will

become clear in the derivations below. We can rewrite Eq S3 in terms of the
posterior distribution as

P (rt, ξt|C1:t) =
1

P (C1:t)
P (rt, ξt,C1:t)

=
P (C1:t−1)

P (C1:t)

∑

rt−1

∑

ξt−1

P (rt, ξt|rt−1, ξt−1,C
(r)
t )

× P (Ct|rt−1, ξt−1,C
(r)
t−1)P (rt−1, ξt−1|C1:t−1).

(S4)
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Eq S4 is the basis for the iterative Bayesian algorithm, since it allows us
to derive the posterior distribution at time t as a function of the posterior
distribution and a number of auxiliary variables at time t− 1.

For computational convenience, we rewrite the posterior from Eq S4 as
an unnormalized posterior

U(rt, ξt|C1:t) =
∑

rt−1

∑

ξt−1

P (rt, ξt|rt−1, ξt−1,C
(r)
t )P

(rt−1,ξt−1)
t (S5)

where we introduced P
(rt−1,ξt−1)
t to denote the posterior from the previous

trial times the conditional predictive probability for the current category,

P
(rt−1,ξt−1)
t ≡ P (Ct|rt−1, ξt−1,C

(r)
t−1)P (rt−1, ξt−1|C1:t−1). (S6)

To compute the unnormalized posterior in Eq S5, we need:

• the conditional predictive probability, which we compute in the follow-
ing Section 1.1.1;

• the change-point posterior, which we compute in Section 1.1.2;

• the posterior from the previous trial.

We put everything together in Section 1.1.3.

1.1.1 Conditional predictive probability

The posterior over state at the end of trial t − 1, given the last rt−1 trials
and the previous state ξt−1, is

P (πt−1|rt−1, ξt−1,C
(r)
t−1) ∝ Jπt−1 6= ξt−1KP (πt−1|rt−1,C

(r)
t−1). (S7)

For computational convenience, we denote Ψ
(r,π)
t ≡ P (πt = π|rt = r,C

(r)
t )

and we store it in a table. Clearly, Ψ
(r,π)
t depends only on the length of the

run r, the category probability π and the number of times category A occurs
during the run. In the algorithm below, Ψ is computed iteratively trial-
by-trial and values of Ψ are computed only for combinations of run length
and number of A categories that occur in the sequence. The conditional
predictive probability for observing Ct, using Eq S7, is

P (Ct|rt−1, ξt−1,C
(r)
t−1) =

∑

πt−1

P (Ct|πt−1)P (πt−1|rt−1, ξt−1,C
(r)
t−1)

∝
∑

πt−1

P (Ct|πt−1)Jπt−1 6= ξt−1KΨ
(rt−1,πt−1)
t−1 .

(S8)
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1.1.2 The change-point posterior

The conditional posterior on the change point (that is, run length) and pre-

vious state, P (rt, ξt|rt−1, ξt−1,C
(r)
t ), has a sparse representation since it has

only two outcomes: the run length either continues to grow (rt = rt−1 + 1
and ξt = ξt−1) or a change point occurs (rt = 0 and the posterior over ξt is

the posterior over πt−1 computed from C
(r)
t ). We have

P (rt, ξt|rt−1, ξt−1,C
(r)
t ) = P (rt|rt−1)P (ξt|rt, rt−1, ξt−1,C

(r)
t ). (S9)

The probability of a run length after a change point is

P (rt|rt−1) =











H(rt−1 + 1) if rt = 0

1−H(rt−1 + 1) if rt = rt−1 + 1

0 otherwise

(S10)

where the function H(τ) is the hazard function,

H(τ) =
Pgap(g = τ)

∑∞
t=τ Pgap(g = t)

, for τ ≥ 1. (S11)

Pgap is the prior over run lengths. In our experimental setup, Pgap(g) =
1

gmax−gmin+1
Jgmin ≤ g ≤ gmaxK, with gmin = 80 and gmax = 120.

The conditional posterior over the previous state is

P (ξt|rt, rt−1, ξt−1, Ct,C
(r)
t−1) =

{

P (πt−1 = ξt|rt−1, ξt−1, Ct,C
(r)
t−1) if rt = 0

δ(ξt − ξt−1) otherwise

(S12)

where P (πt−1|rt−1, ξt−1, Ct,C
(r)
t−1) is the posterior over state given that Ct has

just been observed,

P (πt−1|rt−1, ξt−1, Ct,C
(r)
t−1) ∝ P (πt−1, rt, rt−1, ξt−1, Ct,C

(r)
t−1)

∝ P (Ct|πt−1)P (πt−1|rt−1, ξt−1,C
(r)
t−1)P (rt|rt−1)

∝ P (Ct|πt−1)Jπt−1 6= ξt−1KΨ
(rt−1,πt−1)
t−1

(S13)
where in the last step P (rt|rt−1) is constant in πt−1 and therefore irrelevant.
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1.1.3 Iterative posterior update and boundary conditions

Using Eqs S5 and S9, the iterative posterior update equation becomes

U(rt, ξt|C1:t) =
∑

rt−1

P (rt|rt−1)
∑

ξt−1

P (ξt|rt−1, ξt−1,C
(r)
t )P

(rt−1,ξt−1)
t (S14)

which is computed separately for the case rt = 0 and rt > 0 via Eqs S7-S13.
We assume as boundary conditions that a change point just occurred and

uniform probability across previous states

P (r0, ξ0|∅) = δ(r0)
1

|Sπ|
. (S15)

Once we have U(rt, ξt|C1:t), we can easily obtain the normalized posterior
P (rt, ξt|C1:t) by computing the normalization constant via a discrete sum-
mation over run lengths rt and previous states ξt,

P (rt, ξt|C1:t) =
U(rt, ξt|C1:t)

Z(C1:t)
, with Z(C1:t) =

∑

rt

∑

ξt

U(rt, ξt|C1:t).

(S16)
This result together with Eq S1 allows the observer to compute P (Ct+1|C1:t).

1.2 Task-dependent predictive distributions

Armed with an expression for the observer’s posterior distribution over run
lengths and previous states, given all trials experienced so far (Eq S16), we
can now compute the predictive distributions for the observer’s response at
trial t for the covert- and overt-criterion tasks.

1.2.1 Covert-criterion task

The probability density of a noisy measurement xt is

p(xt|Ct) = N (xt|µCt
, σ2) (S17)

with σ2 ≡ σ2
v + σ2

s , where σ2
v is the observer’s visual measurement noise and

σ2
s is the stimulus variance. The conditional posterior for category Ct, after

observing xt, is

P (Ct|xt,C1:t−1) =
P (xt|Ct)P (Ct|C1:t−1)

∑

C′

t
P (xt|C ′

t)P (C ′
t|C1:t−1)

. (S18)
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We assume that for a given noisy measurement the observer responds Ĉt if
that category is more probable, that is,

P (Ĉt|xt,C1:t−1) = JP (Ct|xt,C1:t−1) > 0.5K. (S19)

The probability of observing response Ĉt for a given stimulus st is there-
fore

P (Ĉt|st,C1:t−1) =

∫

P (Ĉt|xt,C1:t−1)N (xt|st, σ2
v)dxt (S20)

which can be easily computed via 1-D numerical integration over a grid of
regularly spaced xt using trapezoidal or Simpson’s rule [3].

We can also consider an observer model with lapses that occasionally
reports the wrong category with probability 0 ≤ λ ≤ 1,

Plapse(Ĉt|st,C1:t−1) = (1− λ)P (Ĉt|st,C1:t−1) +
λ

|C| , (S21)

where |C| is the number of categories in the task (|C| = 2 in our case), and
we assume equal response probability across categories for lapses.

1.2.2 Overt-criterion task

The optimal criterion zopt is the point at which P (CA|x, t) = P (CB|x, t), given
the available information at trial t. Specifically, noting that P (C, πt|x) ∝
P (x|C)P (C|πt)P (πt), we have

∑

πt

P (x|CA)P (CA|πt)P (πt) =
∑

πt

P (x|CB)P (CB|πt)P (πt)

P (x|CA)
∑

πt

πtP (πt) = P (x|CB)
∑

πt

(1− πt)P (πt)

∑

πt
πtP (πt)

∑

πt
(1− πt)P (πt)

= e−
(x−µB)2

2σ2 +
(x−µA)2

2σ2

=⇒ z
opt
t =

σ2 log Γt

µB − µA

+
1

2
(µA + µB)

(S22)

where we have defined Γt =
∑

πt
πtP (πt)

∑
πt

(1−πt)P (πt)
. We assume that µA and µB are

known exactly from the training session.
The probability that the observer reports criterion ẑt at trial t is

P (ẑt|C1:t−1) = N (ẑt|zopt
t , σ2

a), (S23)
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where σ2
a is criterion-placement (adjustment) noise. Note that the likelihood

at trial t is based on information gathered through trial t− 1.
We can also consider an observer model with lapses who occasionally

reports a criterion uniformly at random with probability 0 ≤ λ ≤ 1,

Plapse(ẑt|C1:t−1) = (1− λ)P (ẑt|C1:t−1) +
λ

180
. (S24)

1.3 Algorithm

In the following, we use the notation P (x|y) ∝ f(x,y) to indicate that
the user needs to compute f(x,y) and then normalize as follows, P (x|y) =

f(x,y)∑
x′

f(x′,y)
.

1. Initialize

(a) Posterior P (r0, ξ0|∅) = δ(r0)
1

|Sπ |

(b) Lookup table Ψ(r0,π0) = δ(r0)
1

|Sπ |

(c) Set trial t = 1

2. Observe new category Ct

3. Compute auxiliary variables

(a) Evaluate predictive probability (Eq S8)

P (Ct|rt−1, ξt−1,C
(r)
t−1) ∝

∑

πt−1

P (Ct|πt−1)Jπt−1 6= ξt−1KΨ
(rt−1,πt−1)

(b) Evaluate the predictive probability times posterior probability
(Eq S6)

P
(rt−1,ξt−1)
t = P (Ct|rt−1, ξt−1,C

(r)
t−1)P (rt−1, ξt−1|C1:t−1)

(c) Evaluate the posterior probability over state (from Eq S13)

P (πt−1|rt−1, ξt−1, Ct,C
(r)
t−1) ∝ P (Ct|πt−1)Jπt−1 6= ξt−1KΨ

(rt−1,πt−1)

4. Update run length and previous-state posterior

8



(a) Calculate the unnormalized change-point probabilities (Eq S14)

U(rt = 0, ξt|C1:t) =
∑

rt−1

H(rt−1 + 1)

×
∑

ξt−1

P (πt−1 = ξt|rt−1, ξt−1, Ct,C
(r)
t−1)P

(rt−1,ξt−1)
t

(b) Calculate the unnormalized growth probabilities (see Eq S14)

U(rt = rt−1 + 1, ξt = ξt−1|C1:t) = [1−H(rt−1 + 1)]P
(rt−1,ξt−1)
t

(c) Calculate the normalization (Eq S16)

Z(C1:t) =
∑

rt

∑

ξt

U(rt, ξt|C1:t)

(d) Determine the posterior distribution (Eq S16)

P (rt, ξt|C1:t) =
U(rt, ξt|C1:t)

Z(C1:t)

5. Bookkeeping and predictions

(a) Update sufficient statistics for all r and π

Ψ̃
(r,π)
t =

{

1 if r = 0

Ψ
(r,π)
t−1 P (Ct|πt−1 = π) if r > 0

Ψ
(r,π)
t =

Ψ̃
(r,π)
t

∑

π′ Ψ̃
(r,π′)
t

(b) Compute the predictive distribution of category (Eq S1)

(c) Store predictive posterior over πt

P (πt|C1:t) ∝
∑

rt

∑

ξt

Ψ
(rt,πt)
t Jπt 6= ξtKP (rt, ξt|C1:t)

6. Increase trial index t← t+ 1 and return to step 2

For each trial t, the posterior predictive distributions calculated in steps 5b
and 5c are used to compute the observer’s response probabilities in the covert-
and overt-criterion tasks, respectively, as described in Section 1.2.
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2 Additional models

We describe here a number of model variants which we did not include in
the main text for reasons of space. For all additional models, we report as a
model comparison metric the difference in log marginal likelihood (∆LML)
with respect to a baseline model (mean ± SEM across subjects). Usually,
unless stated otherwise, we take as baseline the best-fitting model described
in the main text, Expbias. Positive values of ∆LML denote a worse-fitting
model than baseline.

2.1 Bayesian

The main text discusses four Bayesian models. Bayesideal is the algorithm
above, using the precise generative model for our experiment. Bayesr uses
the same algorithm, but adds a free parameter for the run-length distribution
(and hence the hazard function) assumed by the observer. Bayesπ also uses
the same algorithm, but adds a parameter for the range of the set of five
states assumed by the observer. Bayesβ assumes the observer uses a beta-
distributed prior over states. To implement this observer requires minor
modifications of the algorithm. In particular, the beta prior is substituted
for the uniform distribution in the initialization steps for P (r0, ξ0|∅) and

Ψ(r0,π0) as well as the update step for Ψ̃
(r,π)
t in the case where rt = 0.

To ensure the robustness of our results we fit two additional suboptimal
Bayesian models and compared each model to the winning model (Expbias).
To capture conservatism as we did in the Expbias model, we fit a model
that took a weighted average between the probability predicted by the ideal
observer model and π = 0.5 (Bayesbias). The weight on the probability
computed by an ideal observer was defined by the parameter w with range
0 ≤ w ≤ 1, such that 0 indicated the use of a fixed criterion and 1 the optimal.
This model is similar to the Bayesβ model described in the main text with
a symmetric hyperprior on π, in that both result in conservatism. However,
we ran it to ensure that the fits did not change when the parameterization
was identical to the Expbias model. We also fit a three-parameter model,
in which the maximum run length r and the hyperparameter β were both
free parameters (Bayesr,β). We chose these parameters because the Bayesr
model was the best fitting Bayesian model tested, and the Bayesβ model
takes into account conservatism, which we observed in our data. Neither of
these additional models fit better than the Expbias (Bayesbias: ∆LMLcovert =
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19.92± 5.00, ∆LMLovert = 20.49± 3.43; Bayesr,β: ∆LMLcovert = 5.89± 2.10,
∆LMLovert = 10.54± 4.32).

2.2 Reinforcement learning – probability updating

The following model (RLprob) differs from the RL models in the main text
in that it updates the category probability (as opposed to updating the de-
cision criterion), which makes it similar to the exponential-averaging model.
Similarly to the RL models in the main text (and in contrast with the Exp
models), it updates probability according to a delta rule which is applied
only after incorrect responses. After each response at trial t, the probability
estimate for the next trial is updated using the following delta rule,

π̂A,t+1 =

{

π̂A,t if correct

π̂A,t + αprob(Ct − π̂A,t) if incorrect
(S25)

where π̂A,t is the observer’s estimate of the probability for category A on trial t
(π̂B,t = 1−π̂A,t), αprob is the learning rate, and Ct is the current category label.
Thus, the probability estimate is updated when negative feedback is received
by taking a small step in the direction of the most recently experienced
category. This model has two free parameters (αprob and either σv or σa).

To capture conservatism, we considered an additional model (RLprob, bias)
in which we took a weighted average between the probability estimate and
π = 0.5, which added another free parameter w to the model.

In terms of model comparison, both models were indistinguishable from
the fixed criterion model (RLprob: ∆LMLcovert = −2.48± 2.11, ∆LMLovert =
−2.92 ± 1.22; RLprob, bias: ∆LMLcovert = 0.36 ± 2.18, ∆LMLovert = 1.09 ±
1.34). Furthermore, the fits were significantly worse than the Expbias model
(RLprob: ∆LMLcovert = 61.75±13.44, ∆LMLovert = 75.53±10.20; RLprob, bias:
∆LMLcovert = 58.91± 13.71, ∆LMLovert = 71.52± 9.91).

2.3 Wilson et al. (2013)

The Wilson et al. model [4, 5] was developed as an approximation to the
full change-point detection model. Their approximation used a mixture of
delta rules, each of which alone is identical to our Exp model with different
learning rates. In the main text, we fit a three node model with two free
node parameters (l2 and l3) and the hyperparameter on category probability

11



νp as a free parameter as well. Here, instead we fit the model with νp = 2,
which was determined based on our experimental design. On average, this
model provided a worse fit than the Wilson et al. model presented in the
main text (∆LMLcovert = 28.79±9.91; overt task: ∆LMLovert = 4.18±2.94).

3 Comparison of the Bayesr,π,β and the Expbias

models

We compared the winning Expbias from our preliminary model-comparison
analysis to the Bayesr,π,β, which allowed for incorrect beliefs and a bias to-
wards equal priors. Because of the complexity of the Bayesr,π,β, we fit both
models using maximum likelihood and variational Bayes [6], thus computing
the Bayesian information criteria (BIC) and ELBO scores for each observer
and model. Each of these model-comparison methods penalizes the model
for increased complexity. The maximum-likelihood fits for each model and
task are shown in Fig S1A (covert) and Fig S1B (overt). The relative model-
comparison scores are shown in Fig S1C. For both BIC and ELBO, we found
that the two models were indistinguishable from one another.

4 Model comparison with AIC

To ensure the robustness of our model comparison results, in addition to using
the log marginal likelihood as a measure of goodness of fit, we calculated the
Akaike information criterion (AIC) [7]. Unlike the log marginal likelihood,
AIC uses a point estimate and penalizes for complexity by adding a correction
for the number of parameters k: AIC = 2k−2 ln(L̂), where L̂ is the maximum
log likelihood of the dataset. Like the log marginal likelihood, AIC is best
interpreted as a relative score. The model comparison results using relative
AIC scores (relative to the winning model) are shown in Fig S2. From the
plot we see that our results do not change using a different metric (compare
with Fig 3 in the main text). Furthermore, the ranks for all models do not
change for either task when comparing -0.5 AIC and LML scores (ρ = 1.0,
p < 0.0001). Note that for historical reason the AIC scores have an additional
factor of two.
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Figure S1. Maximum-likelihood model comparison. Maximum-
likelihood fits in the covert (A) and overt (B) tasks for observers CWG and
GK, respectively (green - Expbias; dark blue - Bayesr,π,β). The observer’s
response is shown in gray. The relative model-comparison scores (C) were
computed using both BIC and ELBO (an approximate lower bound of the
log marginal likelihood) scores. Error bars: +/- 2 S.E.
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Figure S2. Model comparison with AIC scores. AIC scores relative to
the Expbias model are shown for the covert (top) and overt (bottom) tasks.
Higher scores indicate a worse fit. Error bars: 95% C.I.
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5 Recovery analysis

5.1 Model recovery

We performed a model recovery analysis to validate our model-fitting pipeline
and ensure that models were identifiable [8]. For this analysis, we generated
ten synthetic datasets from each model, observer, and task (1,980 datasets).
Parameters for each simulated dataset were determined by sampling with re-
placement from the posterior over model parameters. We fitted these datasets
with all models (17,820 fits), and for each pair of generating and fitting mod-
els we calculated the proportion of times each model fit the data best (i.e.,
had the greatest LML score), producing the confusion matrix in Fig S3.
First, the fact that the confusion matrix is mostly diagonal means that most
datasets were best fit by their true generating model, suggesting a generally
successful recovery.

Across both tasks, we found that the true generating model was the best-
fitting model for 70.1%±9.0% of simulated datasets (covert: 66.06%±11.36%;
overt: 74.0% ± 8.6%; mean and SEM across models). For most simulated
datasets, the true generating model was recovered for all models except the
Exp model (see diagonal in Fig S3), which was best fit by the Wilson et al.
(2013) model. However, this does not affect the results as the Wilson et al.
(2013) model was not the best-fitting model across observers. Additionally, in
the covert-criterion task (Fig S3B) the RL model simulations were best fit by
the Expbias model. This is potentially due to the fact that observers exhibited
a greater amount of conservatism in the covert task. Increased conservatism
results in smaller, smoother changes of criterion, which is consistent with
what we observed in the RL model (see the third row, third column panel in
Fig 2D in the main text), so that data from the RL model are also well fit
by the Expbias model. However, these models were clearly distinguishable in
the overt task (Fig S3C), which allows us to rule out the RL model. These
results again provide support for the use of tasks, such as our overt task, that
allow the researcher to better distinguish between computational models.

5.2 Parameter recovery

To determine whether our parameter estimation procedure was biased, we
analyzed the parameter recovery performance for the Expbias model. Specif-
ically, for each observer we created ten synthetic datasets by sampling from
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the posterior over model parameters and simulating the experiment with the
same experimental parameters as the observer experienced. Each synthetic
dataset was then fit to the Expbias model and the best fitting parameters
(MAP estimates) were estimated. For each parameter and task, we con-
ducted a paired-samples t-test comparing the average best fitting parameters
to the average generating parameters. We did not find a statistically signif-
icant difference between the fitted and generating αExp and w parameters
for either task: αExp (covert: t(10) = 1.14, p = 0.28; overt: t(10) = 1.01,
p = 0.34) and w (covert: t(10) = −2.00, p = 0.07; overt: t(10) = 0.46,
p = 0.66), suggesting good parameter recovery. While there was no signif-
icant difference between the fitted and generating noise parameter (σv) in
the covert task (t(10) = 2.10, p = 0.06), we found a significant difference in
the noise parameter (σa) in the overt task (t(10) = −16.53, p = 1.37e− 08).
This difference remained significant after correcting for multiple comparisons
using the Bonferroni cutoff of p = 0.0083. This result suggests that σa was
overestimated on average.

6 Measurement task

6.1 Procedure

During the ‘measurement’ session, observers completed a two-interval forced-
choice, orientation-discrimination task in which two black ellipses were pre-
sented sequentially on a mid-gray background and the observer reported the
interval containing the more clockwise ellipse (Fig S4A). This allowed us to
measure the observer’s sensory uncertainty.

6.2 Analysis

A cumulative normal distribution was fit to the orientation-discrimination
data (probability of choosing interval one as a function of the orientation
difference between the first and second ellipse) using a maximum-likelihood
criterion with parameters µ, σ, and λ (the mean, SD, and lapse rate). We
define threshold as the underlying measurement SD σv (correcting for the
2IFC task by dividing by

√
2).
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Figure S3. Model recovery. For each model, observer, and task, 10 sets
of parameters were sampled from the model posterior and used to gener-
ate synthetic data (1,980 total simulations). The synthetic datasets were
then fit to each model (17,820 fits) and the goodness of fit was judged by
computing the LML. The proportion of “wins” (i.e., the number of times
the simulated model outperformed the alternative models) is indicated by
brightness. Model recovery performance is shown across both tasks (A), the
covert task only (B), and the overt task only (C).

6.3 Results

Fig S3B shows a representative psychometric function for one observer. The
average threshold across observers was σv = 6.71◦ ± 1.23◦.

7 Category training

7.1 Procedure

Category training was completed prior to the covert- and overt-criterion
tasks, so observers could learn the category distributions. It was important
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Figure S4. Measurement task. A: Trial sequence. Two ellipses were
presented sequentially on a mid-gray background. The observer reported the
interval containing the more clockwise ellipse. Feedback was provided. B:
The best fitting psychometric function for one observer. The area of each
data point is proportional to the number of trials.

not to confound category learning with probability learning. Training was
identical to the covert-criterion task (Fig S5A). On each trial (Ntrials = 200),
a black ellipse was presented on a mid-gray background and observers re-
ported the category to which it belonged. Category probability was equal
during training and we provided correctness feedback. To determine how well
observers learned the category distributions, observers estimated the mean
orientation of each category at the end of the training block by rotating an el-
lipse to match the mean orientation (Fig S5B). Each category was estimated
exactly once.

7.2 Results

Observers’ estimates of the category means are shown in Fig S5C as a function
of the true mean. Data points represents each observer’s estimate after each
task for each category. There was a significant correlation between category
estimates and the true category means (category A: r = 0.82, p < 0.0001;
category B: r = 0.97, p < 0.0001), suggesting that participants learned the
categories reasonably well. On average, estimates were repelled from the
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category boundary (average category A error of 11.3◦ ± 6.3◦ and average
category B error of −8.0◦ ± 2.6◦; mean and SEM across observers).
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Figure S5. Category training. A: Trial sequence. After stimulus offset
observers reported the category by key press and received feedback. B: Mean
estimation task. After completing the training block, observers rotated an
ellipse to estimate the category means. C: Estimation results. Observers’
category-mean estimates are shown as a function of the true category mean
for each category, observer and task.

8 Individual model fits

The maximum a posteriori (MAP) model fits for each observer, task, and
model are plotted below for all models. Note that the parameter values
obtained for the Bayesr,π,β model via maximum likelihood are equivalent to
MAP estimates, since for all parameters we used flat priors in the chosen
parameterization.
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Figure S6. Bayesideal fits based on MAP estimation in the covert
(A) and overt (B) tasks for each observer.
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Figure S7. Bayesr fits based on MAP estimation in the covert (A)
and overt (B) tasks for each observer.

21



0 ��� ��

����

�

���
CWG

0 400 800

-150

-50

50
EGC

0 400 800

-100

0

100
EHN

0 400 800

-100

0

100
ERK

0 400 800

-100

0

100
GK

0 400 800

-100

0

100
HHL

0 400 800

-100

0

100
JKT

0 400 800

-100

0

100
JYZ

0 400 800

-100

0

100
RND

0 400 800

-150

-50

50
SML

0 400 800

-100

0

100
SQC

trial number

e
x
c
e

s
s
 ‘
A

’ r
e

s
p

o
n

s
e

s

A

B

0 400 800

-50

0

50
CWG

0 400 800

-50

0

50
EGC

0 400 800

-50

0

50
EHN

0 400 800

-50

0

50
ERK

0 400 800

-50

0

50
GK

0 400 800

-50

0

50
HHL

0 400 800

-50

0

50
JKT

0 400 800

-50

0

50
JYZ

0 400 800

-50

0

50
RND

0 400 800

-50

0

50
SML

0 400 800

-50

0

50
SQC

trial number

c
ri
te

ri
o

n
 o

ri
e

n
ta

ti
o

n
 (

d
e

g
)

Figure S8. Bayesπ fits based on MAP estimation in the covert (A)
and overt (B) tasks for each observer.
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Figure S9. Bayesβ fits based on MAP estimation in the covert (A)
and overt (B) tasks for each observer.
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Figure S10. Bayesr,π,β fits based on maximum-likelihood estimation
in the covert (A) and overt (B) tasks for each observer.
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Figure S11. Fixed fits based on MAP estimation in the covert (A)
and overt (B) tasks for each observer.

25



0 �  !  

"#  

 

#  

CWG

0 400 800

-150

-50

50
EGC

0 400 800

-100

0

100
EHN

0 400 800

-100

0

100
ERK

0 400 800

-100

0

100
GK

0 400 800

-100

0

100
HHL

0 400 800

-100

0

100
JKT

0 400 800

-100

0

100
JYZ

0 400 800

-100

0

100
RND

0 400 800

-150

-50

50
SML

0 400 800

-100

0

100
SQC

trial number

e
x
c
e

s
s
 ‘
A

’ r
e

s
p

o
n

s
e

s
A

B

0 400 800

-50

0

50
CWG

0 400 800

-50

0

50
EGC

0 400 800

-50

0

50
EHN

0 400 800

-50

0

50
ERK

0 400 800

-50

0

50
GK

0 400 800

-50

0

50
HHL

0 400 800

-50

0

50
JKT

0 400 800

-50

0

50
JYZ

0 400 800

-50

0

50
RND

0 400 800

-50

0

50
SML

0 400 800

-50

0

50
SQC

trial number

c
ri
te

ri
o

n
 o

ri
e

n
ta

ti
o

n
 (

d
e

g
)

Figure S12. Exp fits based on MAP estimation in the covert (A)
and overt (B) tasks for each observer.
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Figure S13. Exp
bias

fits based on MAP estimation in the covert
(A) and overt (B) tasks for each observer.
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Figure S14. Wilson et al. (2013) fits based on MAP estimation in
the covert (A) and overt (B) tasks for each observer.
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Figure S15. RL fits based on MAP estimation in the covert (A)
and overt (B) tasks for each observer.
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Figure S16. Behrens et al. (2007) fits based on MAP estimation
in the covert (A) and overt (B) tasks for each observer.
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Figure S17. Behrens et al. (2007) + bias fits based on MAP
estimation in the covert (A) and overt (B) tasks for each observer.
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