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1. Supplementary Results

A. Analysis and parameter exploration.

A.1. Uninfected epithelium. The uninfected epithelium model is
a linear system of ODEs that can be studied analytically. We
use a continuous time model because the stages overlap in
time and have different birth/death rates. The system has
only one equilibrium, which is

Ũs = (1 − ∆p)(1 − ∆q)
−∆q

ρbNb
µ

[1a]

Ũd = (1 − ∆p)(1 − ∆q)
−∆q

ρbNb
ν

[1b]

Ũp = 1 − ∆p
−∆q

ρbNb
ρp

[1c]

Its Jacobian matrix is a diagonal matrix,

J =

[−µ ν 0
0 −ν (1 − ∆q)ρp
0 0 ∆q ρp

]
[2]

and thus the eigenvalues are easily found (λ1 = −µ, λ2 = −ν,
λ3 = ∆q ρp).

Since µ, ν, and ρp are biological parameters and must be
positive, this equilibrium is stable iff ∆q ρp < 0. For this
condition to hold (and the epithelium size to make biological
sense), ∆q must be negative. The fact that the eigenvalues
are never complex indicate that there are no limit cycles
and that the solution grows (or decays) unbounded when the
equilibrium is unstable.

The eigenvalues also allow us to calculate the relaxation
time, which indicates which parameters have the most effect on
how quickly the system reaches equilibrium (i.e. how quickly
the epithelium reaches homeostasis). If the eigenvalues are all
negative, the leading eigenvalue, λl, determines the long-term
behaviour of the system since it has the largest relaxation time,
−1/λl. Which eigenvalue is the leading eigenvalue changes
depending on which parameter values are used. Therefore, we
used a sensitivity analysis to study within our given param-
eter space which parameter has the most effect on time to
equilibrium. Our results show that ∆q is the most important
parameter (Table 2 in main text).

Next we investigate what governs the thickness, or in other
words the sum of the equilibria. Let h be a measure for how
thick the epithelium is at homeostasis (h = Ũp + Ũd + Ũs).
To determine which parameters affect thickness the most, we
maximize h. To do so, we simplify the model by making two
assumptions: i) we do not follow Us because it simply collects
cells leaving the Ud population and ii) we re-parameterize
the model, such that, C1 = ρb(1 − ∆p)Nb, C2 = ρp ∆q, and
C3 = ρp(1 − ∆q). Together this give the following simplified

model,
dUd
dt = C3Up − νUd [3a]

dUp
dt = C1 − C2Up. [3b]

Using this set of equations, we get h = C3 C1
C2ν

+ C1
C2

.
By computing the partial derivative of h with respect to
the 4 parameters and setting them to 0 (i.e. solving for
∂h
∂C2

= ∂h
∂C3

= ∂h
∂C1

= ∂h
∂ν

= 0), and then checking the sign of
the second order derivatives for concavity, we find that there is
no finite set of parameter values that maximizes h. Therefore,
to study how much parameters affect the maximum of h in a
restricted parameter space, we use uncertainty and sensitivity
analysis (as described in the methods).

A.2. Parameter inference. In order to fix the carrying capacity
of the basal layer, Nb, we choose the maximum value of the
DAPI counts of the basal cells in FOVs across all replicates.
Experiments that reach homeostasis within the experimental
time window will best estimate this parameter. Given that
∆p was estimated to be ≈ 0, this implies that a growing
equation for the basal layer (equation 2 in the main text) is
not necessary and future fits could just use the original model
that assume a constant population size of Ub.

In order to reduce the number of parameters estimated,
we used the counts of cells dividing at each time point from
the BrDU stains to determine a relationship between the
replication rates as a means. This constrained the value of ρp
to be smaller than the replication rate of basal cells, ρb. The
BrdU stains give the proportion of cells dividing in each layer
(basal, non-keratinized suprabasal and keratinized suprabasal)
at each measured time point and we assumed that this is
represents the lit-up cells during the cell cycle stages of DNA
systhesis (S), postsynthesis (G2) and mitosis (M). Following
(1) the total time of the mean cell cycle, Tc, is the sum of the
time in these three phases, Tr, and the time in postmitotic
phase (G1), i.e. Tc = Tr + Tg1. The proportion of cells
that are labeled and lit up (which we have from the BrdU
data) are Li, where i = b or p for basal cells or parabasal
cells respectively. We assume then that Li = Tr/Tci and
that Tr is constant (only the G1 phase can vary in duration)
and therefore is the same for both basal and parabasal cells.
Assuming the replication rates follow these relationships with
the mean cell cycle time, ρb = ln(2)/Tc and ρp = ln(2)/Tc,
and substituting Tcb = Tr/Lb and Tcp = Tr/Lp we obtain
the following relationship ρp = (Lp

Lb
) ρb. Given that the data

does not distinguish parabasals from differentiated cells in
the non-keratinized suprabasal layer, we correct this equation
with the fraction of parabasal cells, Up

Up+Ud
, so that ρp is not

applied to differentiated cells. This gives the equation we used
for parameter estimation,

ρp = ρb

(
Lp
Lb

)(
Up

Up + Ud

)
, [4]

Murall et al. 1 of 8



where Up and Ud are the variables parabasal and differentiated
cells in Model 1 in the main text. The mean proportions
of dividing cells for each cell type was calculated from the
BrdU stains, giving Lp

Lb
= 0.02

0.15 . Thus the basal layer had more
dividing cells at any given time than parabasal layer. This
relationship had a strong effect on the inferred ∆q value and
thus it should be estimated from the data for specific systems
in future studies.

The inferred death rate, µ, was found to be nearly zero
(Table 1, main text) which is consistent with the fact that in
the experiment there is no mucus to wash away dead cells thus
this parameter would expected to be zero experimentally (the
dead cells pile up and would be counted).

Finally, using a loglikelihood ratio test, we found that for
this dataset, a reduced model where ∆p = 0 outperformed
our full model, however, other reduced models where ∆q = 0
did not, signifying then that ∆p is not necessary but ∆q is to
explain our data.

A.3. Human papillomaviruses. For low-risk HPV infections, we
show that re-seeding (via some infection of the basal cells
during at least the initial part of the infection) is necessary
for creating a wart-like excess number of cells. We make the
infection rate a decaying function that approaches zero, i.e.
β(t) = β0e

−bt, thus mimicking rapid microabrasion repair.
In Figure S1b, we see that this quick removal of re-seeding
decreases the number of infected cells (in this case, nearly
2 orders of magnitude lower than the baseline). As a conse-
quence, the infection goes nearly undetected by the immune
system and lasts for many years. Thus, if microabrasions
repair quickly then higher burst sizes (i.e. HPV types with a
colonization strategy) would be more adaptive.

In Figure S2a, b and c, we demonstrate how increasing
either burst size or HPV-driven proliferation of basal/parabasal
cells leads to faster growing infections and thus detection and
clearance by the immune system. To model progression Figure
S2, we made ∆q, ∆p, m and µ increase logistically with
respect to time using the theta-logistic equation (2). Let N
be a dummy variable, which can be replaced by ∆q, ∆p, m or
µ, has the form

dN
dt = rN

(
1 −

(
N

K

)θ)
[5a]

where K = 1 and r = 0.01. In order for the curves reach
saturation more slowly θ = 1/2. These new time variant
equations were rescaled so that they increased within the
following ranges: ∆q [-0.012,0], ∆p [-0.012,1], m [0.1,1] and
µ [0.67,4]. In addition ρp was increased to 3. Note that this
causes the parabasal cells to bulk-up. In any case, a full
investigation into modelling progression of HR-HPV is beyond
the scope of this paper. In particular it would require changing
several assumptions over time and including a more dynamic
interaction with the immune system.

A.4. Chlamydia. In Figure S3 we see the effect of when infection
rates are different between the stages (i.e., βb < βp < βu),
namely that there is asynchrony of the oscillations between
the uninfected cells and the infected cells. Comparing the
dynamics of Ud and Id or Up and Ip helps visualize the time-
lag between the oscillations. From a dynamical perspective,
this echoes ecological predator-prey results (3): if a ‘predator’

(here chlamydia) feeds upon a stage-structured ‘prey’ popu-
lation (here epithelium) with differing attack rates between
the stages (here βb < βp < βu), dampened oscillatory popu-
lation dynamics can be observed. The time-lags between the
epithelial layers and the asynchrony between the uninfectecd
and infected epithelial layers stabilize the infection dynamics.
If the infection rates are similar for all stages (βb = βp = βu),
the dynamics are less stable, with large oscillations around
zero that generate infections with only acute phases.

A.5. Non-stratified HPV infection model. In order to compare what
added benefit the stratification of the epithelium can give when
it is explicitly considered in our model, we build a non-stratified
HPV infection model. As in ‘conical’ viral dynamics models
(4), we consider four main populations: target cells (which in
this case are epithelium cells lumped into one population), T ,
infected cells, I, free virus particles, V , and a population of
effector cells from the adaptive immune response, A. Assuming
that the epithelium is at homeostasis when the infection begins,
we assume T is at a carrying capacity and thus constant. We
considered two other formulations where we had an explicit T
equation: dT

dt
= λ T − µ T or dT

dt
= λ T (1 − T/Nb), where Nb

is a carrying capacity and λ = µ. The results we present below
did not change significantly when using either of these two
T equations (not shown), thus we present here the simplest
version of the model. The three equations of the system are

dI
dt = β V T + ρa I − (µ+ κ A) I [6a]

dV
dt = µ θ I − ζ V [6b]

dA
dt = σ I A. [6c]

The epithelium cells are infected by free virions at a rate
β V T . HPV drives infected cells to proliferate, ρa I. Infected
cells die at a natural rate of µ I and are killed by the interaction
of immune cells, κ A I. Free virions are released when infected
cells die naturally, µ θ I and are cleared by the mucus at
rate ζ V . Finally, immune cells proliferate as a response to
the density of infected cells, σ I A. The model schematic is
below (Figure S4). We maintained the parameter estimates
the same as the ones used in the main text (Table 3), except
we varied ρa and θ to study their effect on the dynamics of the
infection. The main assumption contrasting wart-associated
and HR types is that HR ρa is higher (due to their stronger
cell transforming properties).

We find that the non-stratified model of HPV infection is
not able to reproduce what is known about HPV infections,
particularly when comparing wart-associated vs HR infections.
HR-HPV types have stronger cell proliferation properties than
wart-associated types, however, they produce flat infections
that, on average, last longer. The non-stratified model gives
a contradictory result: the HPV-proliferation rate, ρa has a
strong effect on infection dynamics such that the stronger it
is the more infected cells accumulate and quickly (Figure S5
A and B-D). Therefore, the model erroneously predicts that
HR-HPVs accumulate more cells and have shorter infections
(Figure S5 A i vs. ii).
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Fig. S1. Effect of re-seeding on wart-associated-HPV infection kinetics. a. Infection with baseline parameters. b. Here infection rate of basal cells β decays to zero with
time (with decay rate b = 0.05). No wart-like manifestation of the infection is possible.
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High-risk HPV
b. higher oncogene-driven proliferation

c. higher burst size d. progression (basal phenotype cell
 popualtions increase with time)
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Fig. S2. Effect of parameter variations on the kinetics of HR-HPV infection. a. Infection with baseline parameters. b. and c. HR-HPV gives wart-like infections with either
higher HPV-driven proliferation (3x) or higher burst size (1 order of magnitude higher), thus demonstrating that HR-HPVs need to keep both of these parameters down in order
to have flat, slow growing infections. d. Progression with stronger HPV-driven proliferation, increasing symmetric divisions biased toward making more basal-like cells, and
increasing differentiated cell death.
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Fig. S3. Time series of uninfected cells (Ud and Up) and the infected cells of the same
layers (Id and Ip). Infection with baseline parameters.
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Fig. S4. Non-stratified HPV infection model schematic. A population of target cells,
T , becomes infected by interacting with free virions, V at a rate β. Infected cells, I,
self-proliferate, ρa, due to HPV infection. Infected cells die naturally, µ, and release the
virions they contain with a burst size of θ. Free virions are cleared by mucus, ζ, and
infected cells are killed by the adaptive response, A, at rate σ.
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Fig. S5. Non-stratified model. A. Time series of i. low cell proliferation driven by HPV infection (wart-associated-HPV-like), ρa = 0.7 and θ = 106, and ii. high cell
proliferation by HPV infection (HR-HPV-like), ρa = 1.4 and θ = 104. Cell accumulation and duration are the opposite of what is seen in real infections, i.e. HR-HPV infections
should accumulate less cells and last longer. B, C, D. Parameter plots of burt size, θ, and HPV-driven cell proliferation, ρa. The magnitude of the peak of infected cells, I, (C)
and the duration of the infection (D) are controlled almost exclusively by HPV-driven cell proliferation, ρa, not burst size. Parameter values: β = 10−10, Nb = 103, µ = 0.67,
ζ = 1.18, κ = 0.0024, σ = 0.0001
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