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Update processes

Let W = [wi,j ] with wi,j ≥ 0 and wi,i = 0 be the N ×N matrix representing an
evolutionary graph of N nodes, where wi,j is the weight on the arrow going from
node j to node i. We observe the graph at discrete time steps t = 0, 1, 2, . . .. As
defined in the main text, M(t) ⊆ U = {1, 2, ..., N} gives the current mutant con-
figuration on the graph. Residents have fitness z = [z1, z2, ..., zN ]T where zj > 0
is the fitness of a resident at node j. Mutants have fitness r = [r1, r2, ..., rN ]T ,
where rj > 0 is the fitness of a mutant at node j. Under Bd, the quantity yi,j(t)
in Eq. (1) of the main text is

yi,j(t,Bd) =



zj∑
k∈M(t)

rk +
∑

k 6∈M(t)

zk

wi,j∑
k

wk,j
if j is a resident at t

rj∑
k∈M(t)

rk +
∑

k 6∈M(t)

zk

wi,j∑
k

wk,j
if j is a mutant at t

(1)

while under dB is

yi,j(t, dB) =



1

N

wi,jzj∑
k∈M(t)

wi,krk +
∑

k 6∈M(t)

wi,kzk
, if j is a resident at t

1

N

wi,jrj∑
k∈M(t)

wi,krk +
∑

k 6∈M(t)

wi,kzk
, if j is a mutant at t

(2)

Demographic variance

The demographic variance σ2 is the expected variance in individual contribution
to reproductive value in the next time step [1]. Let v̂j =

∑
i vibi,j be the

contribution to reproductive value in the next time step of an individual in
node j. Here bi,j is a random variable for the number of individuals contributed
to node i by an individual in node j. Therefore, v̂j is also a random variable with
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Birth-death (Bd) death-Birth (dB)

complete 2
N

2
N

k-regular 2
N

2
N

star N−1
N

N(2N+1)−2
[(N−1)2+1]2 ∼

2
N2

2N2+N−2
4N(N−1) →

1
2

wheel 4N3−6N2+18N−16
3((N−1)2+3)2 ∼ 4

3N
N+8

8(N−1) →
1
8

ceiling fan (N−1)(N2+3)
(2+(N−1)2)2 ∼

1
N

2N2+4N−6
9(N−1)2 → 2

9

line 2N+6
(N+2)2 ∼

2
N

2N−3
(N−1)2 ∼

2
N

Table 1: Demographic variance σ2 for the five undirected graphs shown in Fig.

4 in the main text and their asymptotic for N →∞.

expectation E(v̂j) = λvj , stable population growth times reproductive value at
j (see main text). The corresponding variance is [3]

Var(v̂j) =
∑
i

v2i Var(bi,j) + 2
∑
i<k

v2i v
2
kCov(bi,j , bk,j) (3)

The average variance of v̂j over all individuals at demographic stability when
between-individual contributions are assumed independent is [3]

σ2 =
∑
j

ujVar(v̂j) =
∑
j

uj

[∑
i

v2i Var(bi,j) + 2
∑
i<k

v2i v
2
kCov(bi,j , bk,j)

]
. (4)

The quantity σ2 for a neutral graph of N nodes is computed from the average
projection matrix A. In this case, uj = 1

N for all j. All Var(bi,j) terms in (4)
are Var(bi,j) = ai,j(1 − ai,j), because ai,j is the mean of bi,j , which in graphs
can only take value 0 or 1 under both update processes, and ai,j(1− ai,j) is the
corresponding variance. We now look at the covariance terms. Stasis/survival at
node j and fertilities at the same node have positive covariance, as reproduction
is conditional on survival. Let bj,j and bi,j be indicators for stasis in node
j and offspring placement in node i 6= j, respectively. Then, E(bj,j) = aj,j ,
E(bi,j) = ai,j and E(bj,jbi,j) = ai,j . Using Cov(x, y) = E(xy) − E(x)E(y),
we obtain Cov(bj,j , bi,j) = ai,j(1 − aj,j). As for off-diagonal entries of column
j, fertilities in node j have negative covariance between them, because in a
reproduction event the offspring can be placed in only one node. Let bi,j and
bk,j be indicators for offspring placement in i and offspring placement in k
(where i 6= j, k 6= i and k 6= j), respectively. Then, E(bi,jbk,j) = 0 and
Cov(bi,j , bk,j) = −ai,jak,j . Substituting in Eq. (4) leads to the expression for
the demographic variance of a graph in the main text. In Table 1, we report
formulas for σ2 for several undirected graphs.

Undirected graphs with node independent fitness

In undirected graphs with node independent fitness, residents have fitness 1,
while beneficial mutants have fitness 1 + s with s > 0. Then W is the graph
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adjacency matrix and wi,j is an indicator variable that takes value 0 or 1 de-
pending on the absence or presence, respectively, of a link between i and j. Let
kj be the degree (i.e. number of links) of node j. Then, for neutral populations
(s = 0) under Bd the probability that j is selected to reproduce is 1

N for all j
and the probability that j will place the offspring in node i 6= j is 1

kj
. Hence,

ai,j =


wi,j

Nkj
i 6= j and process is Bd

1− 1

N

∑
m

wi,m

km
i = j and process is Bd

(5)

Under dB, i dies with probability 1
N and each neighbor has a probability 1

ki
of

replacing i with an offspring. Hence,

ai,j =


wi,j

Nki
i 6= j and process is dB

1− 1

N
i = j and process is dB

(6)

The reproductive value of i is proportional to k−1i under Bd and to ki under dB
[2]. In our scaling,

vi =


N

ki
∑

j
1
kj

process is Bd

Nki∑
j kj

process is dB
(7)

Table 2 reports reproductive values for graphs in Fig. 4 of the main text.
To get ∆λ, we slightly perturb the matrix A by s. Differentiating and

evaluating at s = 0 leads to linear mutant deviations,

∆ai,j =


s

(N − 1)wi,j

N2kj
i 6= j and process is Bd

s
1

N2

∑
m

wi,m

km
i = j and process is Bd

(8)

and

∆ai,j =

s
(ki − 1)wi,j

k2iN
i 6= j and process is dB

0 i = j and process is dB
(9)

Using Eq. (4) from the main text,

∆λ =
1

N

∑
i,j

vi∆ai,j (10)

Table 3 reports computations of ∆λ using this formula for graphs in Fig. 4.
Alternatively, the matrices Ã can be formed without expressing mutant val-

ues as linear deviations from resident values. The quantity ∆λ can be retrieved
from the Perron root of these matrices. Under Bd, a single mutant in an other-
wise resident population has a probability 1+s

N+s of being selected for reproduc-

tion, while a resident individual has corresponding probability 1
N+s .
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reproductive value (Bd) reproductive value (dB)

complete vj = 1 vj = 1

k-regular vj = 1 vj = 1

star
vcenter = N

(N−1)2+1

vperiphery = N(N−1)
(N−1)2+1

vcenter = N
2

vperiphery = N
2(N−1)

wheel
vcenter = 3N

(N−1)2+3

vperiphery = N(N−1)
(N−1)2+3

vcenter = N
4

vperiphery = 3N
4(N−1)

ceiling fan
vcenter = 2N

(N−1)2+2

vperiphery = N(N−1)
(N−1)2+2

vcenter = N
3

vperiphery = 2N
3(N−1)

line
vextremity = 2N

N+2

vinterior = N
N+2

vextremity = N
2(N−1)

vinterior = N
N−1

Table 2: Reproductive values for the undirected graphs shown in Fig. 4.

∂λ/∂s|s=0 (Bd) ∂λ/∂s|s=0 (dB)

complete 1
N

1
N

N−2
N−1 ∼

1
N

k-regular 1
N

1
N

k−1
k

star 2N(N−1)
N2[(N−1)2+1] ∼

2
N2

N−2
2N(N−1) ∼

1
2N

wheel 2(N−1)[(N−1)2+4N−1]
3N2[(N−1)2+3] ∼ 2

3N
3N−4

4N(N−1) ∼
3

4N

ceiling fan (N−1)[(N−1)2+5N−1]
2N2[(N−1)2+2] ∼ 1

2N
2N−3

3N(N−1) ∼
2

3N

line N+1
N(N+2) ∼

1
N

N−2
2N(N−1) ∼

1
2N

Table 3: Sensitivity of λ to a small change in node-independent fitness for graphs
in Fig. 4 and their asymptotic behavior for N →∞.
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Selective RV-advantage ∆λ (Bd)

complete s
N+s

k-regular graph s
N+s

star 1
N+s

[
1− N2

2(N−1) +

√
(1 + s)2 +

(
N(N−2)
2(N−1)

)2]

wheel 1
6(N+s)

[
2(1 + s)− N2−2

N−1 + 1 + s

√(
4 + N(N−4)

(1+s)(N−1)

)2
− 4N(N−4)

(1+s)(N−1)

]

ceiling fan 1
4(N+s)

[
1 + s− N2−N+2

N−1 + 1 + s

√(
3 + N(N−3)

(1+s)(N−1)

)2
− 4N(N−3)

(1+s)(N−1)

]

Table 4: Selective RV-advantage under Bd computed from the Perron root of
the matrix Ã.

Selective RV-advantage ∆λ (dB)

complete s(N−2)
N(N−1+s)

k-regular graph s(k−1)
N(k+s)

star 1
N

(√
(1+s)(N−1)

N−1+s − 1

)
wheel 1

N

[
1+s
3+s

(
1 +

√
s+4(N−1)
N−1+s

)
− 1

]
ceiling fan 1

N(2+s)

[
1+s
2

(√
5N+(4N−3)(1+s)−6

N−1+s − 1

)
− 1

]
Table 5: Selective RV-advantage under dB computed from the Perron root of
the matrix Ã.
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Hence,

ãi,j =


(1 + s)wi,j

(N + s)kj
i 6= j and process is Bd

1− 1

N + s

∑
m 6=i

wi,m

km
i = j and process is Bd

(11)

Under dB, a single mutant in j within an otherwise resident population has a
probability 1+s

ki+s of being selected to reproduce given i 6= j is selected to die.
Hence,

ãi,j =


(1 + s)wi,j

N(ki + s)
i 6= j and process is dB

1− 1

N
i = j and process is dB

(12)

Note that the left eigenvector problem cÃ = λc may sometimes be simplified to
fewer than N equations leading to an explicit expression for λ̃ (the Perron root).
This is done by noting that c is the invading mutant reproductive value vector.
A regular graph appears identical from every node to a single invader and mutant
reproductive value must be equal at all nodes. Then c has all components scaled
to 1 and the eigenvector problem reduces to a single linear equation in λ. In star,
ceiling fun and wheel graphs, we have only two classes of nodes and, similarly,
we obtain a reduction from N to 2 equations (a quadratic problem in λ where
λ̃ is the greatest root). This is done by noting that mutant reproductive value
can only be different between the central node and any periphery node. Tables
4-5 report ∆λ computed with this approach for several graph structures. In the
case of the line, the strategy is not as effective. Let us number nodes from 1 to
N consecutively along the line. If N is even, then nodes j and N − j + 1 (with
1 ≤ j ≤ N

2 ) look identical to an invading mutant. Every node is in one of such
pairs. Therefore, the possible reduction in the number of equations is from N
to N

2 If N is odd, then nodes j and N − j+ 1 (with 1 ≤ j ≤ N−1
2 ) look identical

to an invading mutant. Every node is in one of such pairs except node N−1
2 + 1,

which should be treated separately. Therefore, the reduction in the number of
equations is from N to N−1

2 + 1.
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