S1 Text: Invasion and effective population size of graph-structured populations

Stefano Giaimo ${ }^{1}$, Jordi Arranz ${ }^{1}$, and Arne Traulsen ${ }^{1}$
${ }^{1}$ Department of Evolutionary Theory
Max Planck Institute for Evolutionary Biology August-Thienemann-Straße 2, 24306 Plön, Germany
giaimo@evolbio.mpg.de

Update processes

Let $\mathbf{W}=\left[w_{i, j}\right]$ with $w_{i, j} \geq 0$ and $w_{i, i}=0$ be the $N \times N$ matrix representing an evolutionary graph of N nodes, where $w_{i, j}$ is the weight on the arrow going from node j to node i. We observe the graph at discrete time steps $t=0,1,2, \ldots$. As defined in the main text, $M(t) \subseteq U=\{1,2, \ldots, N\}$ gives the current mutant configuration on the graph. Residents have fitness $\mathbf{z}=\left[z_{1}, z_{2}, \ldots, z_{N}\right]^{T}$ where $z_{j}>0$ is the fitness of a resident at node j. Mutants have fitness $\mathbf{r}=\left[r_{1}, r_{2}, \ldots, r_{N}\right]^{T}$, where $r_{j}>0$ is the fitness of a mutant at node j. Under Bd , the quantity $y_{i, j}(t)$ in Eq. (1) of the main text is

$$
y_{i, j}(t, \mathrm{Bd})= \begin{cases}\frac{z_{j}}{\sum_{k \in M(t)} r_{k}+\sum_{k \notin M(t)} z_{k}} \frac{w_{i, j}}{\sum_{k} w_{k, j}} & \text { if } j \text { is a resident at } t \tag{1}\\ \frac{r_{j}}{\sum_{k \in M(t)} r_{k}+\sum_{k \notin M(t)} z_{k}} \frac{w_{i, j}}{\sum_{k} w_{k, j}} & \text { if } j \text { is a mutant at } t\end{cases}
$$

while under dB is

$$
y_{i, j}(t, \mathrm{~dB})= \begin{cases}\frac{1}{N} \frac{w_{i, j} z_{j}}{\sum_{k \in M(t)} w_{i, k} r_{k}+\sum_{k \notin M(t)} w_{i, k} z_{k}}, & \text { if } j \text { is a resident at } t \tag{2}\\ \frac{1}{N} \frac{w_{i, j} r_{j}}{\sum_{k \in M(t)} w_{i, k} r_{k}+\sum_{k \notin M(t)} w_{i, k} z_{k}}, & \text { if } j \text { is a mutant at } t\end{cases}
$$

Demographic variance

The demographic variance σ^{2} is the expected variance in individual contribution to reproductive value in the next time step [1]. Let $\hat{v}_{j}=\sum_{i} v_{i} b_{i, j}$ be the contribution to reproductive value in the next time step of an individual in node j. Here $b_{i, j}$ is a random variable for the number of individuals contributed to node i by an individual in node j. Therefore, \hat{v}_{j} is also a random variable with

	Birth-death (Bd)	death-Birth (dB)
complete	$\frac{2}{N}$	$\frac{2}{N}$
k-regular	$\frac{2}{N}$	$\frac{2}{N}$
star	$\frac{N-1}{N} \frac{N(2 N+1)-2}{\left.(N-1)^{2}+1\right]^{2}} \sim \frac{2}{N^{2}}$	$\frac{2 N^{2}+N-2}{4 N(N-1)} \rightarrow \frac{1}{2}$
wheel	$\frac{4 N^{3}-6 N^{2}+18 N-16}{3\left((N-1)^{2}+3\right)^{2}} \sim \frac{4}{3 N}$	$\frac{N N+8}{8(N-1)} \rightarrow \frac{1}{8}$
ceiling fan	$\frac{(N-1)\left(N^{2}+3\right)}{\left(2+(N-1)^{2}\right)^{2}} \sim \frac{1}{N}$	$\frac{2 N^{2}+4 N-6}{9(N-1)^{2}} \rightarrow \frac{2}{9}$
line	$\frac{2 N+6}{(N+2)^{2}} \sim \frac{2}{N}$	$\frac{2 N-3}{(N-1)^{2}} \sim \frac{2}{N}$

Table 1: Demographic variance σ^{2} for the five undirected graphs shown in Fig. 4 in the main text and their asymptotic for $N \rightarrow \infty$.
expectation $\mathbb{E}\left(\hat{v}_{j}\right)=\lambda v_{j}$, stable population growth times reproductive value at j (see main text). The corresponding variance is [3]

$$
\begin{equation*}
\operatorname{Var}\left(\hat{v}_{j}\right)=\sum_{i} v_{i}^{2} \operatorname{Var}\left(b_{i, j}\right)+2 \sum_{i<k} v_{i}^{2} v_{k}^{2} \operatorname{Cov}\left(b_{i, j}, b_{k, j}\right) \tag{3}
\end{equation*}
$$

The average variance of \hat{v}_{j} over all individuals at demographic stability when between-individual contributions are assumed independent is [3]

$$
\begin{equation*}
\sigma^{2}=\sum_{j} u_{j} \operatorname{Var}\left(\hat{v}_{j}\right)=\sum_{j} u_{j}\left[\sum_{i} v_{i}^{2} \operatorname{Var}\left(b_{i, j}\right)+2 \sum_{i<k} v_{i}^{2} v_{k}^{2} \operatorname{Cov}\left(b_{i, j}, b_{k, j}\right)\right] \tag{4}
\end{equation*}
$$

The quantity σ^{2} for a neutral graph of N nodes is computed from the average projection matrix \mathbf{A}. In this case, $u_{j}=\frac{1}{N}$ for all j. All $\operatorname{Var}\left(b_{i, j}\right)$ terms in (4) are $\operatorname{Var}\left(b_{i, j}\right)=a_{i, j}\left(1-a_{i, j}\right)$, because $a_{i, j}$ is the mean of $b_{i, j}$, which in graphs can only take value 0 or 1 under both update processes, and $a_{i, j}\left(1-a_{i, j}\right)$ is the corresponding variance. We now look at the covariance terms. Stasis/survival at node j and fertilities at the same node have positive covariance, as reproduction is conditional on survival. Let $b_{j, j}$ and $b_{i, j}$ be indicators for stasis in node j and offspring placement in node $i \neq j$, respectively. Then, $\mathbb{E}\left(b_{j, j}\right)=a_{j, j}$, $\mathbb{E}\left(b_{i, j}\right)=a_{i, j}$ and $\mathbb{E}\left(b_{j, j} b_{i, j}\right)=a_{i, j}$. Using $\operatorname{Cov}(x, y)=\mathbb{E}(x y)-\mathbb{E}(x) \mathbb{E}(y)$, we obtain $\operatorname{Cov}\left(b_{j, j}, b_{i, j}\right)=a_{i, j}\left(1-a_{j, j}\right)$. As for off-diagonal entries of column j, fertilities in node j have negative covariance between them, because in a reproduction event the offspring can be placed in only one node. Let $b_{i, j}$ and $b_{k, j}$ be indicators for offspring placement in i and offspring placement in k (where $i \neq j, k \neq i$ and $k \neq j$), respectively. Then, $\mathbb{E}\left(b_{i, j} b_{k, j}\right)=0$ and $\operatorname{Cov}\left(b_{i, j}, b_{k, j}\right)=-a_{i, j} a_{k, j}$. Substituting in Eq. (4) leads to the expression for the demographic variance of a graph in the main text. In Table 1, we report formulas for σ^{2} for several undirected graphs.

Undirected graphs with node independent fitness

In undirected graphs with node independent fitness, residents have fitness 1, while beneficial mutants have fitness $1+s$ with $s>0$. Then \mathbf{W} is the graph
adjacency matrix and $w_{i, j}$ is an indicator variable that takes value 0 or 1 depending on the absence or presence, respectively, of a link between i and j. Let k_{j} be the degree (i.e. number of links) of node j. Then, for neutral populations $(s=0)$ under Bd the probability that j is selected to reproduce is $\frac{1}{N}$ for all j and the probability that j will place the offspring in node $i \neq j$ is $\frac{1}{k_{j}}$. Hence,

$$
a_{i, j}= \begin{cases}\frac{w_{i, j}}{N k_{j}} & i \neq j \text { and process is } \mathrm{Bd} \tag{5}\\ 1-\frac{1}{N} \sum_{m} \frac{w_{i, m}}{k_{m}} & i=j \text { and process is } \mathrm{Bd}\end{cases}
$$

Under dB, i dies with probability $\frac{1}{N}$ and each neighbor has a probability $\frac{1}{k_{i}}$ of replacing i with an offspring. Hence,

$$
a_{i, j}= \begin{cases}\frac{w_{i, j}}{N k_{i}} & i \neq j \text { and process is } \mathrm{dB} \tag{6}\\ 1-\frac{1}{N} & i=j \text { and process is } \mathrm{dB}\end{cases}
$$

The reproductive value of i is proportional to k_{i}^{-1} under Bd and to k_{i} under dB [2]. In our scaling,

$$
v_{i}= \begin{cases}\frac{N}{k_{i} \sum_{j} \frac{1}{k_{j}}} & \text { process is } \mathrm{Bd} \tag{7}\\ \frac{N k_{i}}{\sum_{j} k_{j}} & \text { process is } \mathrm{dB}\end{cases}
$$

Table 2 reports reproductive values for graphs in Fig. 4 of the main text.
To get $\Delta \lambda$, we slightly perturb the matrix \mathbf{A} by s. Differentiating and evaluating at $s=0$ leads to linear mutant deviations,

$$
\Delta a_{i, j}= \begin{cases}s \frac{(N-1) w_{i, j}}{N^{2} k_{j}} & i \neq j \text { and process is } \mathrm{Bd} \tag{8}\\ s \frac{1}{N^{2}} \sum_{m} \frac{w_{i, m}}{k_{m}} & i=j \text { and process is } \mathrm{Bd}\end{cases}
$$

and

$$
\Delta a_{i, j}= \begin{cases}s \frac{\left(k_{i}-1\right) w_{i, j}}{k_{i}^{2} N} & i \neq j \text { and process is } \mathrm{dB} \tag{9}\\ 0 & i=j \text { and process is } \mathrm{dB}\end{cases}
$$

Using Eq. (4) from the main text,

$$
\begin{equation*}
\Delta \lambda=\frac{1}{N} \sum_{i, j} v_{i} \Delta a_{i, j} \tag{10}
\end{equation*}
$$

Table 3 reports computations of $\Delta \lambda$ using this formula for graphs in Fig. 4.
Alternatively, the matrices $\tilde{\mathbf{A}}$ can be formed without expressing mutant values as linear deviations from resident values. The quantity $\Delta \lambda$ can be retrieved from the Perron root of these matrices. Under Bd, a single mutant in an otherwise resident population has a probability $\frac{1+s}{N+s}$ of being selected for reproduction, while a resident individual has corresponding probability $\frac{1}{N+s}$.

	reproductive value (Bd)	reproductive value (dB)
complete	$v_{j}=1$	$v_{j}=1$
k-regular	$v_{j}=1$	$v_{j}=1$
star	$v_{\text {center }}=\frac{N}{(N-1)^{2}+1}$	$v_{\text {center }}=\frac{N}{2}$
	$v_{\text {periphery }}=\frac{N(N-1)}{(N-1)^{2}+1}$	$v_{\text {periphery }}=\frac{N}{2(N-1)}$
wheel	$v_{\text {center }}=\frac{3 N}{(N-1)^{2}+3}$	$v_{\text {center }}=\frac{N}{4}$
	$v_{\text {periphery }}=\frac{N(N-1)}{(N-1)^{2}+3}$	$v_{\text {periphery }}=\frac{3 N}{4(N-1)}$
ceiling fan	$v_{\text {center }}=\frac{2 N}{(N-1)^{2}+2}$	$v_{\text {center }}=\frac{N}{3}$
	$v_{\text {periphery }}=\frac{N(N-1)}{(N-1)^{2}+2}$	$v_{\text {periphery }}=\frac{2 N}{3(N-1)}$
line	$v_{\text {extremity }}=\frac{2 N}{N+2}$	$v_{\text {extremity }}=\frac{N}{2(N-1)}$

Table 2: Reproductive values for the undirected graphs shown in Fig. 4.

	$\partial \lambda /\left.\partial s\right\|_{s=0}(\mathrm{Bd})$	$\partial \lambda /\left.\partial s\right\|_{s=0}(\mathrm{~dB})$
complete	$\frac{1}{N}$	$\frac{1}{N} \frac{N-2}{N-1} \sim \frac{1}{N}$
k-regular	$\frac{1}{N}$	$\frac{1}{N} \frac{k-1}{k}$
star	$\frac{2 N(N-1)}{N^{2}\left[(N-1)^{2}+1\right]} \sim \frac{2}{N^{2}}$	$\frac{N-2}{2 N(N-1)} \sim \frac{1}{2 N}$
wheel	$\frac{2(N-1)\left[(N-1)^{2}+4 N-1\right]}{3 N^{2}\left([N-1)^{2}+3\right]} \sim \frac{2}{3 N}$	$\frac{3 N-4}{4 N(N-1)} \sim \frac{3}{4 N}$
ceiling fan	$\frac{(N-1)\left[(N-1)^{2}+5 N-1\right]}{2 N^{2}\left[(N-1)^{2}+2\right]} \sim \frac{1}{2 N}$	$\frac{2 N-3}{3 N(N-1)} \sim \frac{2}{3 N}$
line	$\frac{N+1}{N(N+2)} \sim \frac{1}{N}$	$\frac{N-2}{2 N(N-1)} \sim \frac{1}{2 N}$

Table 3: Sensitivity of λ to a small change in node-independent fitness for graphs in Fig. 4 and their asymptotic behavior for $N \rightarrow \infty$.

	Selective RV-advantage $\Delta \lambda(\mathrm{Bd})$
complete	$\frac{s}{N+s}$
k-regular graph	$\frac{s}{N+s}$
star	$\frac{1}{N+s}\left[1-\frac{N^{2}}{2(N-1)}+\sqrt{(1+s)^{2}+\left(\frac{N(N-2)}{2(N-1)}\right)^{2}}\right]$
wheel	$\frac{1}{6(N+s)}\left[2(1+s)-\frac{N^{2}-2}{N-1}+1+s \sqrt{\left(4+\frac{N(N-4)}{(1+s)(N-1)}\right)^{2}-\frac{4 N(N-4)}{(1+s)(N-1)}}\right]$
ceiling fan	$\frac{1}{4(N+s)}\left[1+s-\frac{N^{2}-N+2}{N-1}+1+s \sqrt{\left(3+\frac{N(N-3)}{(1+s)(N-1)}\right)^{2}-\frac{4 N(N-3)}{(1+s)(N-1)}}\right]$

Table 4: Selective RV-advantage under Bd computed from the Perron root of the matrix $\tilde{\mathbf{A}}$.

	Selective RV-advantage $\Delta \lambda(\mathrm{dB})$
complete	$\frac{s(N-2)}{N(N-1+s)}$
k-regular graph	$\frac{s(k-1)}{N(k+s)}$
star	$\frac{1}{N}\left(\sqrt{\frac{(1+s)(N-1)}{N-1+s}}-1\right)$
wheel	$\frac{1}{N}\left[\frac{1+s}{3+s}\left(1+\sqrt{\frac{s+4(N-1)}{N-1+s}}\right)-1\right]$
ceiling fan	$\frac{1}{N(2+s)}\left[\frac{1+s}{2}\left(\sqrt{\frac{5 N+(4 N-3)(1+s)-6}{N-1+s}}-1\right)-1\right]$

Table 5: Selective RV-advantage under dB computed from the Perron root of the matrix $\tilde{\mathbf{A}}$.

Hence,

$$
\tilde{a}_{i, j}= \begin{cases}\frac{(1+s) w_{i, j}}{(N+s) k_{j}} & i \neq j \text { and process is } \mathrm{Bd} \tag{11}\\ 1-\frac{1}{N+s} \sum_{m \neq i} \frac{w_{i, m}}{k_{m}} & i=j \text { and process is } \mathrm{Bd}\end{cases}
$$

Under dB , a single mutant in j within an otherwise resident population has a probability $\frac{1+s}{k_{i}+s}$ of being selected to reproduce given $i \neq j$ is selected to die. Hence,

$$
\tilde{a}_{i, j}= \begin{cases}\frac{(1+s) w_{i, j}}{N\left(k_{i}+s\right)} & i \neq j \text { and process is } \mathrm{dB} \tag{12}\\ 1-\frac{1}{N} & i=j \text { and process is } \mathrm{dB}\end{cases}
$$

Note that the left eigenvector problem $\mathbf{c} \tilde{\mathbf{A}}=\lambda \mathbf{c}$ may sometimes be simplified to fewer than N equations leading to an explicit expression for $\tilde{\lambda}$ (the Perron root). This is done by noting that \mathbf{c} is the invading mutant reproductive value vector. A regular graph appears identical from every node to a single invader and mutant reproductive value must be equal at all nodes. Then \mathbf{c} has all components scaled to 1 and the eigenvector problem reduces to a single linear equation in λ. In star, ceiling fun and wheel graphs, we have only two classes of nodes and, similarly, we obtain a reduction from N to 2 equations (a quadratic problem in λ where $\tilde{\lambda}$ is the greatest root). This is done by noting that mutant reproductive value can only be different between the central node and any periphery node. Tables 4-5 report $\Delta \lambda$ computed with this approach for several graph structures. In the case of the line, the strategy is not as effective. Let us number nodes from 1 to N consecutively along the line. If N is even, then nodes j and $N-j+1$ (with $1 \leq j \leq \frac{N}{2}$) look identical to an invading mutant. Every node is in one of such pairs. Therefore, the possible reduction in the number of equations is from N to $\frac{N}{2}$ If N is odd, then nodes j and $N-j+1$ (with $1 \leq j \leq \frac{N-1}{2}$) look identical to an invading mutant. Every node is in one of such pairs except node $\frac{N-1}{2}+1$, which should be treated separately. Therefore, the reduction in the number of equations is from N to $\frac{N-1}{2}+1$.

References

[1] Steinar Engen, Russell Lande, Bernt-Erik Sæther, and F Stephen Dobson. Reproductive value and the stochastic demography of age-structured populations. The American Naturalist, 174(6):795-804, 2009.
[2] W. Maciejewski. Reproductive value on evolutionary graphs. Journal of Theoretical Biology, 340:285-293, 2014.
[3] Yngvild Vindenes, Aline Magdalena Lee, Steinar Engen, and Bernt-Erik Sæther. Fixation of slightly beneficial mutations: effects of life history. Evolution, 64:1063-1075, 2009.

