SUPPORTING INFORMATION

In-silico Dynamic Analysis of Cytotoxic Drug Administration to Solid Tumours: Effect of Binding Affinity and Vessel Permeability

Vasileios Vavourakis, Triantafyllos Stylianopoulos, Peter A. Wijeratne

Biochemical and drug delivery model parameters

List of model parameters associated with the *Biochemical Solver Module* and the *Drug Delivery Solver Module* (see Fig 1). Cells marked with an asterisk denote shared values for both tissue types, while "NA" denotes non-applicable.

Parameter	Description	Host	Tumour	Source
$\lambda_{\epsilon} [\mathrm{d}^{-1}]$	ECM remodelling rate	8.64e - 4	8.64e - 1	adapted from [1]
$\delta_{\epsilon} [\mathrm{d}^{-1}]$	ECM degradation rate from	7.465	NA	[2]
	MDEs			
$\delta_{\rm d} \left[{\rm d}^{-1} \right]$	ECM degradation rate from drug	0.	8.64e - 2	this work
$\overline{\epsilon}$ [-]	ECM remodelling threshold	0.33	*	[2]
$\overline{\epsilon}_{\mathrm{d}}$ [-]	ECM depletion threshold (due to	NA	0.1	this work
	drug), see Eq (13)			
\bar{c}_{i} [-]	see Eq (13)	NA	0.01	this work
$a_{ m d}$ [–]	see Eq (13)	NA	2.5	this work
$s_{\rm c} [{\rm nm}]$	size of drug molecule, see Eq (9)		1.	
$ au_{\rm c}$ [h]	half-life of the drug		4.	this work
$k_{\rm on} [{\rm s}^{-1}]$	drug association (affinity) rate	0.	0.005, 0.05, 0.5, 5.	adapted from [3]
$k_{\rm off} \ [{ m s}^{-1}]$	drug disassociation rate	0.	1.e-4	[3]
$k_{\rm int} [{ m s}^{-1}]$	drug internalisation rate	0.	$5.e{-5}$	[3]
$\delta_{ m b} \ [m s^{-1}]$	internalised drug decay rate	0.	0.0864e - 5	this work

References

- 1. Wood LB, Ge R, Kamm RD, Asada HH. Nascent vessel elongation rate is inversely related to diameter in in vitro angiogenesis. Integrative Biology. 2012;4:3579–3600.
- Vavourakis V, Wijeratne PA, Shipley R, Loizidou M, Stylianopoulos T, Hawkes DJ. A Validated Multiscale In-Silico Model for Mechano-sensitive Tumour Angiogenesis and Growth. PLOS Computational Biology. 2017;13(1):e1005259. doi:10.1371/journal.pcbi.1005259.
- Stylianopoulos T, Jain RK. Combining two strategies to improve perfusion and drug delivery in solid tumors. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(46):18632–18637. doi:10.1073/pnas.1318415110.