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1 Logarithmic Parameterization of the FSP-FIM

As noted in [1], in many biological systems, rates vary by several orders of magnitude. Therefore,
it may be of interest to consider the relative change in parameter values and formulate the FIM
in terms of the logarithm of the parameters,

I(log ✓) = E
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rlog ✓ log p(X;✓)
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The logarithmic parameterization carries through to the computation of the sensitivity matrix,
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Using the relationship @f(x)
@log x = x@f(x)

@x , we can rewrite Eq. 2 as

rlog ✓ log p(x;✓) = QS⇥, (3)
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and Q = diag{ 1
p}. Therefore, the logarithmic parameterization is easily found by multiplying

the ith column in S by the corresponding parameter ✓i. The log-FSP-FIM can then be computed:

I(log ✓)i,j = Nc

NX

k=1

✓i✓j
p(xk;✓)

ski s
k
j = ✓i✓jI(✓)ij. (4)

2 Central Limit Theorem Approximation

In [2], the authors suggest approximating the FIM for the sample mean and variance to be
jointly Gaussian, i.e. the random vector z = [µs,⌃s]T , Z ⇠ N (z,C), and C is the covariance
matrix:

C =

✓
Cµsµs

Cµs⌃s

(Cµs⌃s)
T C⌃s⌃s

◆
. (5)

The submatrices on the diagonal correspond to the variance of µs and ⌃s, and the o↵ diagonal
terms correspond to correlations between the sample means and variances.

In [2], they derive the elements of each of these matrices in terms of the moments of the
underlying model distribution p(x|✓) for models with one or two species.
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For example, consider the variance/covariance of the sample mean is Cµsµs
, where we have

the data matrix with N measurements X = [xT
1 xT

2 . . .xT
N ]

T , where each row in the matrix X
corresponds to a di↵erent measurement. The sample mean x̄ can be written 1TX/N , where 1
is a column vector of ones of size N . Without loss of generality, let E[x] = 0, and
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Similar procedures can be used find the rest of the C, and are given in detail in the SI of [2].
In this paper, we compared the FIM for the bursting gene expression model, where only the

sample moments were concerned. The formula for the sample-moments FIM for a single species
using the sample mean and variance was derived in the SI of [2],
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where x̃ refers to the centered moment, i.e. hx̃2
i = h(x� hxi)2i.

3 Generation and fitting of simulated data

For the simulated studies of the bursting gene expression model and the toggle model, we gener-
ated 200 simulated data sets for each analysis by sampling the solution of the FSP solution at a
reference parameter set ✓⇤. We used inverse transform sampling to generate 1,000 independent
samples from the FSP solution at each time point, which correspond to RNA measurements
in single cells. The FSP was solved to a precision of at least 10�4. For each data set, we
found the parameters which maximize the likelihood of the data ✓̂ using a combination of global
parameter search (via the Metropolis-Hastings algorithm) and local optimization routines (the
Nelder-Mead and BFGS algorithms), implemented in the scientific Python library SciPy [3].

For the bursting gene expression model, three likelihood functions for each di↵erent approach
were used. As described in the Methods section of the main text, the likelihood for a multivariate
Gaussian is:

L(D;µ,⌃) =
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For the LNA-based likelihood from [1], each di(t) corresponds to an RNA measurement in
a single-cell, and µ(t,✓) and ⌃(t,✓) are both functions of the model parameters. We find
the ✓ which maximizes the logarithm of this function for each simulated data set. The sample-
moments based likelihood instead compares the sample mean and sample variances as the vector
d(t) = [µs(t),⌃s(t)], for which there is only one value per data set (as all the data was used to
find the sample mean and sample variance). In this case, µ(t,✓) is the model predicted average
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of the mean and variance, and ⌃(t,✓) is the model-predicted variance. For the one dimensional
case of RNA in the bursting gene expression model,
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The higher order moments of the model are computed according to Eq. 36 in the main text, and
the likelihood is computed according to Eq. 37.

4 Derivation of information for Gaussian fluctuations

The Gaussian distribution with mean and variance � is defined
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Computing the FIM for this Guassian requires finding the derivative of the log-density
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To take the expected value, we need the second and fourth moments of the normal distribution,
which are �2+� for the second uncentered moment and �4+6�3+3�2 for the fourth uncentered
moment. Thus, we have:
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5 Derivation of information for a Poisson distribution

The Poisson distribution is defined:

f(x,�) =
�xe��

x!
. (15)
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Again, by taking the log

log f(x,�) = x log �� �� log x! (16)

Now, take the derivative with respect to �
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As the FIM is the expected value of this quantity, and the mean and variance of the Poisson
distribution are given by �,
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