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ME-model Reformulation

The ME-model coupling constraint formulation and implementation was
altered from O’Brien et al [1]. These changes allowed a variety of improve-
ments in ME-model size, solve time, and user interpretation. The major
changes made to tRNA charging reactions, coupling constraint implementa-
tion, and the application of the biomass constraint are summarized in the
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following sections.

Formation of tRNA Equivalents

A major goal of this work was to facilitate modular construction of ME-
models (i.e. with the ability to produce models with various macromolecules
or expression processes removed). To this end, the tRNA coupling to trans-
lation was reformulated. This was done in order to account for the dilution
coupling of both the tRNA synthetase and tRNAs themselves during tRNA
charging reactions. In doing so, the tRNA charging reactions now produce
a charged tRNA equivalent. These tRNA equivalents can be included in
the translation reaction directly without a coupling coefficient since dilu-
tion coupling has already been accounted for in the charging reaction. This
allows tRNAs to be cleanly removed without breaking the model by sim-
ply deleting the SubreactionData instances that apply the charged tRNA
equivalents.

To do this, the amino acid metabolite was uncoupled from its charged
tRNA using the following derivation.

Ignoring energy requirements, the overall tRNA charging reaction can be
written as followed:

AA + tRNA +
µ

keff,charging
synthetase→ tRNA∗ (1)

where tRNA∗ corresponds to a charged tRNA.

During translation, a tRNA is used to make the protein. However, be-
cause the tRNA is being used as a catalyst, its synthesis must be coupled
to its use during translation with a coupling constraint. Therefore when the
tRNA is used during translation, it is applied as follows:(

1 +
µ

keff,tRNA

)
tRNA∗ → tRNA + proteini+1 (2)

Where i is the length of the protein before the charged tRNA is applied and
µ

keff,tRNA
represents the coupling of charged tRNA dilution to charged tRNA

mediated amino acid addition (See Coupling Constraint Implementa-
tion below).
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Plugging (1) into (2) gives (3):(
1 +

µ

keff,tRNA

)(
AA + tRNA +

µ

keff,charging
synthetase

)
→

tRNA + proteini+1

(3)

Multiplying out (3) gives (4):

AA + tRNA +

(
1 +

µ

keff,tRNA

)
µ

keff,charging
synthetase+

µ

keff,tRNA
(tRNA + AA)→ tRNA + proteini+1

(4)

The tRNA metabolite shows up on both sides of the equation and can be
dropped giving (5):

AA +

(
1 +

µ

keff,tRNA

)
µ

keff,charging
synthetase+

µ

keff,tRNA
(tRNA + AA)→ proteini+1

(5)

Equation (5) can be split into both the charging reaction (6) and trans-
lation reaction (7):(

1 +
µ

keff,tRNA

)
µ

keff,charging
synthetase+

µ

keff,tRNA
(tRNA + AA)→ generic tRNAAA

(6)

AA + generic tRNAAA → proteini+1 (7)

where generic tRNAAA is a pseudo-metabolite that represents a charged
tRNA equivalent with tRNA coupling already applied. Using the formu-
lation of tRNA charging and translation in (6) and (7), respectively, the
user is able to cleanly remove the tRNA process from the model by simply
removing generic tRNAAA from the model or translation reaction. This is
useful for constructing ME-models for organisms in which tRNA charging is
not well reconstructed, for reducing the complexity of the model (and thus
solve time), and for investigating the role of tRNA charging at a systems
level.
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Stable RNA Splicing

When transcription units containing stable RNAs (tRNA, rRNA, or ncRNA)
are transcribed, the individual RNAs must be excised from the transcript
using various endonucleases. Previous E. coli ME-models included individ-
ual reactions for all the different possible combinations which a transcription
unit (TU) can be excised of rRNA, tRNA, or ncRNA. Only 82 transcription
reactions (representing the 82 modeled transcription units used to express
each of the stable RNA molecules) are present in iJL1678b-ME. Accounting
for all excision possibilities and the subsequent degradation of the excised
noncoding TU portions, however, adds thousands of reactions to the model.
This has a sizable effect on the solve time of the ME-model with limited im-
provement in the predictive capability of the model, therefore the handling
of this was removed from iJL1678b-ME.

In iOL1650-ME, this was modeled by accounting for all possible combi-
nations of RNA excision as separate individual reactions. For instance, if a
TU 1 contains rRNA 1 and rRNA 2 which code at the first and last position
on TU 1, respectively, it would require three separate reactions:

TU 1→ excised portion 1 + rRNA 1

TU 1→ rRNA 2 + excised portion 2

TU 1→ rRNA 1 + excised portion 3 + rRNA 2

(8)

Each of the excised portion metabolites shown in (8) would then require
a separate reaction to degrade the excised portions back into nucleotide
building blocks. While this is a rigorous way of modeling this phenomenon,
it can result in a single TU requiring up to 127 reactions in order to be
transcribed. To bypass this combinatorial problem, each TU in the new
ME-model is transcribed in one single reaction that also degrades all of
the excised portions giving the overall reaction. It is shown below ignoring
excision and degradation enzymes:

TU 1→ rRNA 1 + rRNA 2 + x · nucleotides (9)
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Coupling Constraint Implementation

The previous iterations of ME-models applied coupling constraints in the
following way:

Enzyme Priming: enzyme
v0−→ enzyme primed + α · coupling

Enzymatic Reaction: a + enzyme primed
v1−→ enzyme + b

Dilution Coupling Reaction: enzyme + coupling
v2−→ ∅

(10)

Where α is the coupling coefficient applied to “coupling”, a pseudo
metabolite (constraint) which effectively determines the minimal rate that
the third dilution coupling reaction (v2) must proceed. For previous ME-
model implementations, this coupling constraint was given a “ constraint sense”
in COBRApy of ‘L’ (less than or equal to) meaning that for this toy example
v0 = v1 and v2 ≥ α · v1.

With COBRAme it is assumed that the optimal ME solution will not
dilute more enzyme than is required by the coupling constraint, thus con-
straining v2 = α · v1. Further, the coupling of the metabolite (constraint)
was imposed directly in the reaction that uses the enzyme to give.

a + α · enzyme
v1−→ b (11)

Reformulation the model to impose the coupling coefficients directly into
the reaction in which they participate (equation (11), Figure 3) resulted in
a reduced ME-matrix. This reformulation allowed the removal of coupling
constraints (i.e. the “coupling” and “enzyme primed” pseudo metabolites
shown above in (10)) along with the associated variables (i.e. reactions v0

and v2 in (10)) used in previous ME-models to apply the macromolecular
coupling. Removing these pseudo metabolites and reactions makes the ME-
matrix notably smaller and decreases the solve time.

The above reformulation also reduces the space of feasible fluxes at sub-
optimal growth rates by eliminating inequality constraints. At an optimum,
a ME-model will not waste resources, and, as a result, all the computed
values are pushed up against their inequality constraints, effectively render-
ing them as equalities. Therefore, reformulating the model with equalities
alone will compute the same optimal flux state but results in a much sim-
pler numerical problem when applying the binary search or bisection solving
algorithm (see Optimization Procedure).

As mentioned above, previous ME-model formulations have applied the
coupling constraints as inequalities, thus allowing the simulation to synthe-
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size macromolecule components above the value dictated by the coupling co-
efficient. Imposing the constraints as equalities, however, means that each
COBRAme ME-model solution will synthesize the exact amount of each
macromolecule as dictated by the coupling coefficient, thus giving the com-
puted optimal macromolecule synthesis fluxes for the in silico conditions.
While all enzymes are not fully saturated in E. coli in vivo, this phenomenon
would not be selected as an optimal ME-model solution.

The COBRAme ME-model optimization problem is shown below using
variable names and nomenclature from [1].

max
v,µ

µ

s.t. Sv = 0

vformation,Ribosome −
∑

i∈Peptide

(
lp,i

criboκτ
(µ+ r0κτ ) · vtranslation,i

)
= 0

vformation,RNAP −
∑
i∈TU

(
lTU,i

3criboκτ
(µ+ r0κτ ) · vtranscription,i

)
= 0

vformation,j

−
∑

i∈generic tRNAAA

((
1 +

µ

keff,tRNA

)
µ

keff,charging
vcharging,i

)
= 0,

∀j ∈ Synthetase

vformation,j −
∑

i∈enzymatic reaction

(
µ

keff
ij

vusage,i

)
= 0, ∀j ∈ Enzyme

vformation,j −
∑

i∈tRNA anticodons

(µ+ κτr0)

κτ ctRNA,j
vcharging,i = 0, ∀j ∈ tRNA

vdegredation,j −
kdeg,j

3κτ cmRNA
· µ+ κτr0

µ
vtranslation,j = 0, ∀j ∈ mRNA

vformation,j −
(µ+ κτr0)

3κτ cmRNA
vtranslation,j = 0, ∀j ∈ mRNA

vL ≤ v ≤ vU

µ ≤ vbiomass dilution ≤ µ
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Unmodeled Protein Fraction

Not all of the protein expressed in E. coli K-12 MG1655 is represented
or active in a ME-model. To account for this discrepancy, the unmodeled
protein fraction parameter is used. This parameter ensures that, in addition
to the total protein biomass synthesized by the model to carry out enzymatic
functions, an amount of wasted “unmodeled protein biomass” (dictated by
the unmodeled protein fraction, Q) must be synthesized. This “unmodeled
protein biomass” represents the unmodeled or underused protein in the ME-
model.

The unmodeled protein fraction parameter was applied in the “pro-
tein biomass to biomass” reaction. This reaction converts the protein biomass
and unmodeled protein biomass constraints to the overall biomass constraint
and imposes the unmodeled protein fraction parameter. It has the form of
(12)

protein biomass + n · unmodeled protein biomass→ (1 + n) · biomass
(12)

where:

Q =
n

1 + n
(13)

Since the unmodeled protein fraction is intended to constrain the fraction
of unmodeled protein biomass (n) relative to the total protein contribution
to biomass (1 + n) to be equal to Q. Solving for Q gives (14).

n =
Q

1−Q
(14)

The expression for n as a function of the unmodeled protein fraction (Q) was
used as the coefficient for the “protein biomass to biomass” reaction which
took the form of (15).

protein biomass+
Q

1−Q
·unmodeled protein biomass→ (1+

Q

1−Q
)·biomass

(15)

Braun’s Lipoprotein Demand

To reflect the structural demands of the cell membrane, a Braun’s lipoprotein
demand was implemented to ensure that the most abundant lipoprotein –
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EG10544 (b1677) from the Lpp gene – and membrane murein are produced
according to the following ratio:

0.013894 murein + 0.003597 lipoprotein b1677 −→ ∅ (16)

as described by Liu et al. 2014 [2]. Here, the reaction was bounded by the
growth rate (µ) and the murein used was ’murein5px4p p’.

Lipoprotein Reactions

Lipoprotein biogenesis reactions were added so that 14 lipoproteins from
iJL1678-ME (Liu et al. 2014 [2]) could be created. In iJL1678-ME, lipopro-
teins can be modified by one of seven phosphatidylglycerol metabolites. It
is further modified by either a phosphatidylethanolamine or a phosphatidyl-
glycerol, requiring three enzymatic reactions. These reactions were imple-
mented as one post-translational reaction:


Protein

+ PGmetabolite
+ Phospholipid


 1 of 14

1 of 7
PG or PE

 −→


Lipoprotein
+ G3P

+ 2ag(phospholipid)PG or PE


(17)

which is catalyzed by the enzymes: EG10168 , Lgt, and LspA. The total
number of reactions added to the model is 196 (14 × 7 × 2), in which 14
new lipoproteins are produced and can be used in downstream metabolic
reactions and protein complex formations.

Model Corrections, Improvement and Additions

Dummy Complex / Orphan Reactions

Not all metabolic reactions modeled in iJL1678b-ME are annotated with
the known enzyme complex that catalyzes the metabolic conversion. Pre-
vious ME-model reconstructions have modeled such reactions effectively as
spontaneous reactions with no enzyme complex coupled to metabolic flux.
For ME-models constructed using COBRAme it is assumed that, if the
metabolic reaction does not have an associated catalytic enzyme and is not
explicitly annotated as a spontaneous reaction (i.e., orphan reactions), there
is a protein cost to operating the reaction. This is accomplished by coupling
flux through the orphan reaction to the creation of a “dummy” complex with
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coupling amount of µ
keff

as in other metabolic reactions. The “dummy” com-

plex is composed of a single equivalent of a “dummy” protein with a codon
composition representative of an average gene found in E. coli.

Modeling of Protein Carriers

Some proteins in E. coli act by donating side groups to other proteins or
metabolites (i.e., carriers). In previous ME-models, these reactions were
modeled as

protein mod + metabolite→ protein + metabolite mod (18)

where “mod” represents a generic side group that is donated from the protein
to the metabolite. As a consequence, in some cases the iOL1650 ME-model
did not require the protein to be translated in order for the reaction to
proceed. The new ME-model formulation identifies all such cases and models
the process as(

1 +
µ

keff

)
protein mod + metabolite→ protein + metabolite mod (19)

This effectively accounts for the metabolic cost of producing and donating
the side group (“mod”) while also requiring a portion of the protein mod
complex to be diluted. As a result of this change 52 more genes must be
expressed in iJL1678b-ME compared to it predecessor.

Solve Procedure Simplification

Previous ME-model versions required that the user had previous knowledge
of the growth regime that the E. coli cell would be growing in prior to
solving. In other words, the user had to know whether, for the determined
growth environment, simulated growth was nutrient limited or proteome
limited. Previously, if simulating substrate limited growth, a two step pro-
cedure was required. This included 1) performing binary search to determine
the maximum growth rate µ∗ and 2) performing a minimization on:

min
y

~keff∗ = y · ~keff (20)

where y is a scaling term with values between 0 and 1 to represent the global
enzyme effective rate constant vector ( ~keff ) acting below optimality. This
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was done to produce a realistic flux state that accounts for the observa-
tion that enzymes in a cell undergoing nutrient limited growth act below
optimality (O’Brien et al. 2013 [1]).

To circumvent the need to perform two subsequent optimizations in nu-
trient limited growth, the presented ME-model optimizes for the production
of a “dummy” complex while solving each LP throughout the binary search
procedure. The two approaches give identical results since producing extra
protein is computationally identical to globally reducing enzyme efficiency.

As a result, the following procedure was implemented in COBRAme
to perform the binary search. First, each symbolic coefficient or reaction
bound was compiled into a function by SymPy. Then, a linear program
was created and passed into the linear programming solver, with all of these
symbolic functions evaluated to an initial µ value. For each instance of
the binary search in µ, values in the linear program were replaced by the
new µ value, and the problem was resolved using the last feasible basis and
optimizing for the production of a “dummy” complex. This was repeated
until the difference between the maximum feasible and minimum infeasible
µ computed was within a predetermined tolerance/precision chosen by the
user (See ME-model Characteristics for more on this).

Model Updates and Corrections

No new gene content was added to the model, but several changes were
made to iJL1678-ME if it corrected model errors, reduced the number of
required artificial metabolite sources or sinks, or simplified the model. For
example, previous ME-models included a forced 1:1 flux split constraint be-
tween the reactions catalyzed by the two NADH dehydrogenase complexes,
NDHI (NADH-DHI-CPLX) and NDHII (NADH-DHII-MONOMER). This
was applied in iJL1678-ME to give solutions with P/O ratios within the
measured range. This was removed to reduce the number of artificial con-
straints imposed on the model and since the flux split will not be generally
observed in all experimental conditions.

New modification SubReactions were added to the model to reduce the
number of “free” modifications that could take place without first synthesiz-
ing the machinery or metabolites needed for them to occur. For example, a
modification SubReaction to produce a glycyl radical was added to correctly
model the activity of the PflA enzyme, an enzyme included in iJL1678-ME
that not have any functionality. This modification is required to activate
PflB and TdcE. Additionally ribosomal complex Rpl7/12 requires a modifi-
cation of an acetyl group, which is a modification with a known stoichiom-
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etry [3]. This modification was added as a new modification SubReaction
(mod acetyl c). A feasible stoichiometry for NiFeCoCN2 formation [4], a
metabolite required for formate dehydrogenase activity, was also added to
the model as a modification SubReaction. This allowed the removal of an
artificial source of this metabolite from the model. Lastly, there were a few
complexes with incorrect prosthetic group annotations. This included cy-
tochrome bo3 ubiquinol oxidase (CYT-O-UBIOX-CPLX) missing a hemeO
modification annotation and aminodeoxychorismate lyase (ADCLY-CPLX)
incorrectly associated with a pyridoxal (pydx) modification instead of the
correct pyridoxal 5’-phosphate (pydx5p) modification.

An effort was made to reduce the number of gaps and pseudo metabo-
lites that were present in iJL1678-ME. In order to produce a solving model,
many of these gap/pseudo metabolites were given artificial sources or sinks
to account for their inability to be synthesized. One example of this was
complex NDHII which requires Cu(I) as a coenzyme in order to function.
Since Cu(I) synthesis was previously not included in iJL1678-ME, Cu(I)
was given an artificial source reaction. NDHII, however, has known cupric
reductase activity [5] which uses NADH to reduce Cu(II) to Cu(I). Adding
this reaction to the model removed the requirement for a Cu(I) source. Ad-
ditional pseudo metabolites were allowed to freely exchanged into iJL1678-
ME which represented new metabolites or metabolites already present in the
model, but with different IDs. This includes pseudo-metabolites C10H8O5
and C9H9O4 which were included in the cmo5U at 34 tRNA modification
stoichiometry. The stoichiometry was corrected per [6, 7, 8] which negated
the need for these metabolites to model this modification. Further, fldrd,
fldox, trdox, trdrd were pseudo-metabolites included in iJL1678-ME that
were able to be replaced with their corresponding flavodoxin or thioredoxin
complexes.

The iJO1366 biomass objective function was completely removed from
iJL1678-ME, except for glycogen. This is due to the fact that most of
the components (amino acids, nucleotides, etc.) are already required to
be synthesized in order to form macromolecules in the ME-model. Some
metabolites, such as coenzyme A, however, can be recycled and must be
drained from the model via a biomass objective function-type reaction in
order for the pathways which synthesize these metabolites to be active. To
accomplish this, metabolites similar to coenzyme A were added to a reac-
tion, called “biomass constituent demand” with a coefficient equivalent to
the number used in the iJO1366 biomass objective function. These metabo-
lites included glycogen, 2-octaprenyl-6-hydroxyphenol, nicotinamide ade-
nine dinucleotide, undecaprenyl diphosphate, coenzyme A, riboflavin, nicoti-

11



namide, adenine dinucleotide phosphate, 5,10-methylenetetrahydrofolate,
5,6,7,8-tetrahydrofolate, and 10-formyltetrahydrofolate. The lower and up-
per bound of this reaction was constrained to equal µ to ensure all the
metabolites are produced at levels equivalent to iJO1366. Further, the
biomass created as a result of synthesizing the components was accounted
for (similar to proteins, RNA, etc.) with a “biomass constituent biomass”
constraint/metabolite.

Some enzymes complexes require the synthesis of large prosthetic groups
or the incorporation of coenzymes in order to carry their enzymatic func-
tion. To account for the biomass of these components, iJL1678-ME was up-
dated to include “prosthetic group biomass” constraints. These constraints
are handled identically to the “protein biomass”, “rna biomass”, etc. con-
straints. Similarly, constraints were added which account for the biomass
produced by lipids, peptidoglycans, DNA, and the remaining biomass con-
stituents (described above).

Lastly, corrections were made to iJL1678-ME to remove metabolites
from the in silico growth media that are not present in minimal E. coli
growth media. For instance cob(I)alamin is not essential for growth in E.
coli, but was required in the in silico growth media of iJL1678-ME to pro-
duce a feasible model. This was due to cob(I)alamin being included in
iJL1678-ME as an essential modification for the QueG complex. It has
been shown that the presence of cob(I)alamin increases the epoxyqueuo-
sine reductase tRNA modification activity, but is not necessarily required
for the reaction to take place [9]. Alternatively, a known failure mode of
iOL1678-ME and iJL1678-ME is that all RNA modification genes are com-
putationally essential, when this is not always the case in vivo. This means
that the tRNA modification catalyzed by QueG is computationally essen-
tial. Given that the presence of cob(I)alamin in the in silico media will
allow the activity of three reactions that would not be active when grown
in M9 minimal media (METS (catalyzed by MetH), ETHAAL, and MMM),
the cob(I)alamin modification was removed from QueG and replaced with
the two known iron-sulfur cluster modifications. Biotin was also removed
from the in silico growth media since iJL1678b-ME can synthesize it from
glucose and therefore it does not need to be supplemented for growth.

The remaining minor model corrections are summarized in corrections.py
and iJL1678b model changes.xlsx in ECOLIme.
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Parameter Updates and Corrections

The parameter corresponding to the molecular mass of the RNA component
of a ribosome was adjusted. The value of 1700 kDa used in O’Brien et al.
[1] resulted in an under-abundance of rRNAs synthesized in the simulation.
This parameter value was replaced with 1453 kDa, which is the sum of
the average molecular weights of the 5S, 16S, and 23S rRNAs modeled in
iJL1678b.

The metabolic reaction keff s were set with an average of 65 s−1 and
scaled by their solvent accessible surface area (approximated as the com-

plex’s moleculare weight
3
4 ). A further set of 284 metabolic keff s were found

by Ebrahim et al. [10] to be particularly important in E. coli for computing
an accurate metabolic/proteomic state using proteomics data. These 284
keff s were used in iJL1678b-ME with the upper and lower limit of the keff
values constrained to 3000 and 0.01, respectively. This was done to keep the
vector of keff values within a physiologically feasible range.

ME-model Characteristics

One key characteristic of ME-models is that they are self limiting. This
means that regardless of the amount of in silico nutrients (i.e. glucose)
available to the model, there will be one maximum feasible growth rate pre-
dicted by the model (Fig. A). This results in three growth regions: the
nutrient limited region where growth increases linearly with increasing
glucose availability, the batch growth region where increasing glucose has
no effected on growth rate, and a transition region (called the “Janusian
region” in [1]) between the two which results from the limited proteome
availability beginning to constrain the simulation. Of note, the transition
from nutrient limited growth to batch growth (the “Janusian region”) is
more abrupt for iJL1678b-ME than iOL1650-ME [1]. This is seen because
the iJL1678b-ME simulations are ran using the metabolic reaction keff vec-
tor from Ebrahim et al. [10]. As a result, the model does not predict ac-
etate overflow metabolism at the maximum feasible growth rate in glucose
batch growth conditions. This transition to acetate overflow metabolism
was largely responsible for the extended “Janusian region” in iOL1650-ME.
While the keff vector used for iJL1678b-ME is generally much more pre-
dictive than those used for iOL1650-ME [10], this limitation highlights the
need for further examination of these kinetic constraints on a systems level.

As mentioned above, underlying this transition between nutrient lim-
ited growth and batch growth is caused by a restriction in metabolic pro-
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cesses as a result of the proteome constraints inherent in the model. One
way to visualize these constraints taking effect is to observe the changes
in their dual values (shadow prices) relative to a biological function with
increasing growth rates (shown for ATP synthesis in Fig. A). As the pro-
teome constraints begin to restrict the model around a glucose uptake rate
of 10 mmol

gDW ·hr , for instance, the “protein biomass” constraint increases. This
means alleviating this constraint would increase the amount of ATP the cell
is capable of producing.

Another characteristic of ME-models is that their accuracy depends on
the precision of of the maximum feasible growth rate obtained from binary
search (see Solve Procedure Simplification). Since this value is deter-
mined using a binary/bisection algorithm, the solve procedure requires that
the minimum acceptable difference between maximum computed feasible
growth rate and minimum infeasible growth rate is set as a parameter. The
more precise the growth rate value, the less variability possible in a par-
ticular reaction. In addition to PGI in Figure 4, the effect of µ precision
on flux variability was observed for MGSA (Methylglyoxal synthase) and
E4PD (Erythrose 4-phosphate dehydrogenase) along with the transcription
and translation reactions required to express the enzymes that catalyze these
reactions (Fig. B). MGSA is a nonessential reaction that carries effectively
no flux at the maximum feasible growth rate when grown on glucose. E4PD
can be catalyzed by two isozymes and carries low flux at the maximum fea-
sible growth rate. The trends seen for PGI are generally observed for these
two reactions where the variability effectively disappears when solving with
a µ precision of 10−15. As with PGI, maximum possible reaction flux for
MGSA and the reverse direction of E4PD does not drop to 10−15 mmol

gDW ·hr
by this µ precision. Their maximum value does, however, drop to below
10−13 mmol

gDW ·hr which is orders of magnitude below the lowest metabolic flux
shown in Figure 5
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Supplementary Figures

Fig. A: The iJL1678-ME Growth Curve. In the top panel the computed
growth rate is plotted as a function of glucose uptake. The bottom panel
depicted the role of global ME-model constraints in the transition from
nutrient limited to batch growth, as indicated by the change in their shadow
prices.
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Fig. B: The effect of solver precision on flux variability of reactions MGSA
and E4PD along with the reactions required to synthesize their enzymes.
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