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Mutation peaks at p9 and p11 are robust to mutation calls. In the main text, we
analysed mutations called by MuTect2 [1]. However, the mutational peaks are also evident
when using mutations called by MuSE [2], SomaticSniper [3] and VarScan2 [4] (Supplemental
Figure S3a), as well as when using a filtered dataset [5] that began with mutation data from
various callers for a subset of the samples that were available in 2013 and then removed known
false positives and germ line variations found in dbSNP [6] (Supplemental Figure S3b). To
confirm that the peaks were not a result of misaligned reads, we examined the mappability
scores of the genomic locations of the mutations (ENCODE Accession ENCSR821KQV [7]).
We found that the peaks remained when conservatively filtering mutations by requiring
perfect 36-mer mappability scores (Supplemental Figure S3c).

Recently, it has been reported that in some sequencing samples, many low to moderate
frequency (1 to 5%) G→T variant calls are false positives caused by DNA damage incurred
during sample preparation [8]. To rule out the possibility that the AGA→ATA mutations
(R9I) found in UCEC and COAD/READ were found in samples containing a large number
of experimental artifacts, we used the Damage-estimator code provided by Chen et al. [8]
in their study. Only 4 of 55 UCEC and 5 of 15 COAD/READ samples with R9I mutations
were characterized as damaged via this software. Moreover, the ZF position 9 mutation
peaks persist even when these samples are removed (Supplemental Figure S3d), and even
when all domains with AGA→ATA mutations at position 9 are removed (Supplemental
Figure S3e). Finally, box plots of the tumor sample allele frequencies of R9I UCEC and
COAD/READ mutations and H11Y SKCM mutations are given in Supplemental Figure S4,
and demonstrate that these mutations are not low frequency, but with median frequencies
of 33%, 29% and 31%, respectively.
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