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Fig A. Schematic of the procedure followed to generate training and testing data. Two types of datasets have been used to develop
miRAW: (i) experimentally verified functional datasets that define if a miRNA targets a gene - in grey - and (ii) CLIP datasets that define miRNA
binding site locations in the 3’UTR of a gene - in light yellow -. (A) TarBase and mirTarBase served as the principal functional datasets; after
eliminating duplicated and/or inconsisten entries and annotating the miRNA:gene pairs using miRbase21 and the GRCh18 we divided the
functional datasets into training and testing data. (B) Training data was cross referenced with CLIP data that provided potential miRNA binding
sites for each miRNA:gene pair, thus for each miRNA:gene pair we obtained several miRNA:MBS duplexes; the positive training data was
complemented using highly conserved MBS locations (obtained from target scan conservation scores) and the negative training data was
complemented by selecting stable miRNA:MBS duplexes -provided by ViennaRNA- in experimentally validated negative miRNA:gene pairs. (C)
The training data was split following a cross-validation approach (D) to select and tune the deep neural network; (F)after selecting the appropiate
network design, we used the whole training dataset (balanced classes) to train miRAW’s neural network. (G) The testing functional dataset was
used to test miRAW and to compare it with other state-of-the-art target prediction tools. Additionally, we tested miRAW using independent
experimental microarray datasets showing gene expression after transfection of specific miRNAs (Garcia et Al. 2011) to evaluate the relation
between target prediction and actual miRNA repressive power.
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Fig B. The number of flanking upstream/downstream nucleotides
conditions the performance of the network. To evaluate the number of flanking
upstream/downstream nucleotides to be considered by the neural network we performed
a 10-fold cross-validation analysis using a 10% of the training data and considering
different number of nt -0, 3, 5, 7, 10 and 20-; being 5 the optimal parameter. (a)Scatter
plot relating the number of considered upstream/downstream nucleotides and the
perfomance of the neural network according to accuracy, precision, recall, f1-score and
AUC metrics. The results show that considering 5 flanking nt results in the optimal
configuration for miRAW. (b)Boxplot evaluating the number of considered
upstream/downstream nucleotides and the perfomance of the neural network according
to accuracy, precision, recall, f1-score and AUC metrics. The chart shows significant
differences between the different configurations; showing that considering a some
flanking nucleotides increases the network performance but that selecting too many can
drop the network performance. Both charts point 5 as the optimal number of flanking
nt to be considered as higher values result in significant lower performance.
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Fig C. Architecture of the constructed Deep Neural Network. The network is
composed of eight dense hidden layers (comprising rectifier activation function
-RelU-nodes) whilst the output layer comprises two softmax output nodes (one per
possible class). The shape of the network is consistent with its intended functionality:
(i) the first hidden sparse layer increases the dimensionality of the problem allowing the
representation of data in a more complex dimension (over-completion). There is a
debate in the machine learning community regarding the need of such over-completion
layers, as they do not necessarily improve the efficiency of the network autoencoder
whilst making the learning process slower. Considering that the relatively low number
of inputs of the proposed network allows a fast training procedure, we opted to include
an over-completion layer to give the network the chance of identifying more comlex
pattern. (ii) Hidden layers one to five aim to identify the relevant features representing
the data; they correspond to the first half of a stacked autoencoder. Those layers were
pre-trained as an isolated autoencoder in order to learn the features that are most
representative of miRNA:MBS duplexes. (iii) the last three layers are responsible for
classifying the features learned by the autoencoder and follow the typical shape of a
feedforward classification network.
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Fig D. Architecture of a stacked autoencoder. An autoencoder is an
unsupervised artificial neural network used for dimensionality reduction and for
automatically learning a set of features describing a complex data structure. An
autoencoder has the same number of output as input nodes. Its purpose is to
reconstruct the input values in the output nodes after compressing the input data into a
lower dimensional space. An autoencoder (top figure) its composed of two parts: the
coding layers – which compress the data – and the decoding layers – which reconstruct
the compressed features –. In this work (i) we trained an autoencoder to learn the set of
features representing miRNA:MBS interactions and (ii) combined the coding layers and
their weights with a feed-forward neural network (bottom figure).

1.2 Results
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Fig E. ROC Curves for the different tested algorithms using the 10-fold
test dataset. This plots show the ROC curves corresponding to the different algorithm
predictions for each of the 10 folds of the test dataset. Different configurations of the
same algorithm are plot using different colors. Generally miRAW methods obtain the
best curves being miRAW-6-1:10 with Accessibility Energy filtering the method with
the best results (AUC = 0.824, σ = 0.009). When using miRAW, CSSMs oriented to
the prediction of non-canonical sites obtained better performances when combined with
site accessibility energy filtering; on the other hand, more canonically oriented CSSMs
(miRAW-ts and miRAW-pita) obtain better results when no a posteriori filtering is
applied. Regarding the other tested methods PITA (release 00-top, AUC = 0.599)
provides the best AUC, followed by mirSVR (AUC = 0.581). Note that most of the
algorithm prediction datasets (microT, PITA, TargetScan and mirza-G) only include
confident predictions with scores surpassing a certain established thresholds, this has a
strong affect in the shape of the ROC curves and reduces the AUC values; making the
AUCs not directly comparable with the ones from miRAW.
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Fig F. ROC Curves for the different miRAW configurations using the
100-fold test dataset. The trend set when analyzing the 10-fold test dataset is also
appreciated in this figure. The curves show how site accessibility energy filtering plays a
different role for the different CSSMs. Non-canonical oriented methods (miRAW-7-1:10,
miRAW-7-2:10 and miRAW-6-1:10) obtain better performance when applying
post-filtering whilst more restrictive CSSMs ()miRAW-pita and miRAW-ts) perform
better when no a posteriori filtering is applied.
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Fig G. Comparison of miRAW with different CSSMs and eight other
common target prediction tools (TargetScan C & NC, Diana microT-CDS
v4, PITA v6 , miRanda, Paccmit, mirzaG and mirDB) using the full test
dataset. Colouring for miRAW results follow a rainbow pattern; other prediction tools
follow a light to dark blue color schema. Evaluation was determined in terms of
accuracy, precision, sensitivity, negative precision, specificity and F1-score (an ideal
predictor would obtain a score of 1 for each metric). The optimal miRAW
configurations outperformed other methods in terms of accuracy and F-scores, which
are good representations of general performance measures; they also score amongst the
top methods in the rest of metrics but negative precision. The unbalance in the test
dataset (97:3 ratio between positive and negative data) favors methods biased towards
the prediction of positive targets: algorithms following less restrictive approaches obtain
higher specificity values whilst maintaining similar precision scores (PITA,
microT-CDS); on the other hand, more conservative approaches (mirDB, mirSVR and
TargetScan) obtain higher specificity and negative precision scores. After miRAW,
microT was the method which presented better and more balanced results.
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Fig H. ROC Curves for the different tested algorithms using the full test
dataset. miRAW obtains the best results in terms of area under the curve (AUC)
being miRAW-6-1:10AE (AUC = 0.823) the best configuration. The curves show how
site accessibility energy filtering plays a different role for the different CSSMs:
miRAW-7-1:10, miRAW-7-2:10 and miRAW-6-1:10 obtain better performance when
applying post-filtering whilst miRAW-pita and miRAW-ts obtain worse results.
Regarding the rest of the tested prediction methods, microT-CDS (AUC=0.716) and
Pacmit-NonCons (0.6) emerge as the best non DL-based classifiers; their better
performance is related to its balance regarding positive and negative predictions: whilst
mirDB, targetScan, PITA and mirSVR follow restrictive approaches for site selection,
microT-CDS and Paccmit have fewer constraints. Regarding the influence of
interspecies conservation (Paccmit, TargetScan and Mirza-G), generally configurations
that did not involved interspecies conservation information obtained slightly higher
AUCs than configurations involving such information. Note that most of the algorithm
prediction datasets (microT, PITA, TargetScan and mirza-G) only include confident
predictions with scores surpassing a certain established thresholds, this has a strong
affect in the shape of the ROC curves and reduces the AUC values; making the AUCs
not directly comparable with the ones from miRAW. Suppleentary Table X shows the
specific values for each score.
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Supplementary Tables

Table A. Supplementary table 1 Cross validation of miRAW’s deep artificial neural network results when using XENT loss function. The cross
validation fold which obtained the best performance is highlighted in bold.

Fold TN FN TP FP Accuracy Precision Sensitivity Neg.Precision Specificity F1-Score Neg. F1-Score AUC

1 1698 291 1459 52 0.902 0.910 0.902 0.854 0.970 0.906 0.908 0.949
2 1555 105 1645 195 0.914 0.915 0.914 0.937 0.889 0.915 0.912 0.950
3 1671 221 1529 79 0.914 0.917 0.914 0.883 0.955 0.916 0.918 0.953
4 1559 71 1679 191 0.925 0.927 0.925 0.956 0.891 0.926 0.922 0.962
5 1622 141 1609 128 0.923 0.923 0.923 0.920 0.927 0.923 0.923 0.965
6 1696 226 1524 54 0.920 0.924 0.920 0.882 0.969 0.922 0.924 0.953
7 1642 119 1631 108 0.935 0.935 0.935 0.932 0.938 0.935 0.935 0.968
8 1643 136 1614 107 0.931 0.931 0.931 0.924 0.939 0.931 0.931 0.961
9 1643 157 1593 107 0.925 0.925 0.925 0.913 0.939 0.925 0.926 0.961

Average 1636.56 163.00 1587.00 113.44 0.921 0.923 0.921 0.911 0.935 0.922 0.922 0.958
Std. Dev. 51.82 69.58 69.58 51.82 0.010 0.008 0.010 0.032 0.030 0.009 0.009 0.007
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Table B. Cross validation of miRAW’s deep artificial neural network results when using NLL loss function. The cross validation fold which
obtained the best performance is highlighted in bold.

Set TN FN TP FP Accuracy Precision Sensitivity Neg.Precision Specificity F1-Score Neg. F1-Score AUC

1 1586 142 1608 164 0.913 0.913 0.913 0.854 0.970 0.913 0.908 0.925
2 1566 143 1607 184 0.907 0.907 0.907 0.937 0.889 0.907 0.912 0.922
3 1603 142 1608 147 0.917 0.917 0.917 0.883 0.955 0.917 0.918 0.931
4 1587 118 1632 163 0.920 0.920 0.920 0.956 0.891 0.920 0.922 0.933
5 1555 139 1611 195 0.905 0.905 0.905 0.920 0.927 0.905 0.923 0.919
6 1581 139 1611 169 0.912 0.912 0.912 0.882 0.969 0.912 0.924 0.926
7 1602 128 1622 148 0.921 0.921 0.921 0.932 0.938 0.921 0.935 0.934
8 1577 137 1613 173 0.911 0.912 0.911 0.924 0.939 0.912 0.931 0.925
9 1577 133 1617 173 0.913 0.913 0.913 0.913 0.939 0.913 0.926 0.926

Average 1581.56 135.67 1614.33 168.44 0.913 0.913 0.913 0.911 0.935 0.913 0.922 0.927
Std. Dev. 15.48 8.19 8.19 15.48 0.006 0.005 0.006 0.032 0.030 0.006 0.009 0.005
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Table C. Evaluation of the different miRAW configurations and different target prediction methods using the 10-fold testing dataset (TS stands
for TargetScan).

method TP TN FP FN Accuracy Precision Sensitivity Neg.Precision Specificity F-Score Neg.F-Score

miRAW-6-1:10 NF 46.78 % 18.16 % 31.84 % 03.22 % 0.649 0.595 0.936 0.850 0.363 0.727 0.509
miRAW-6-1:10 AE 39.64 % 30.94 % 19.06 % 10.36 % 0.706 0.675 0.793 0.750 0.619 0.729 0.678
miRAW-7-1:10 NF 44.51 % 24.45 % 25.55 % 05.49 % 0.690 0.635 0.890 0.817 0.489 0.741 0.612
miRAW-7-1:10 AE 34.69 % 36.41 % 13.59 % 15.31 % 0.711 0.718 0.694 0.704 0.728 0.706 0.716
miRAW-7-2:10 NF 45.26 % 23.54 % 26.46 % 04.74 % 0.688 0.631 0.905 0.833 0.471 0.744 0.601
miRAW-7-2:10 AE 36.09 % 35.86 % 14.14 % 13.91 % 0.719 0.718 0.722 0.721 0.717 0.720 0.719
miRAW-Pita NF 36.89 % 36.04 % 13.96 % 13.11 % 0.729 0.725 0.738 0.733 0.721 0.731 0.727
miRAW-Pita AE 22.52 % 43.07 % 06.93 % 27.48 % 0.656 0.764 0.450 0.611 0.861 0.566 0.715
miRAW-TS NF 35.19 % 36.59 % 13.41 % 14.81 % 0.718 0.724 0.704 0.712 0.732 0.714 0.722
miRAW-TS AE 19.76 % 44.53 % 05.47 % 30.24 % 0.643 0.782 0.395 0.596 0.891 0.525 0.714
TS Conserved 06.37 % 46.99 % 03.01 % 43.63 % 0.534 0.676 0.127 0.519 0.940 0.214 0.668
TS NonConserved 19.73 % 36.04 % 13.96 % 30.27 % 0.558 0.585 0.395 0.544 0.721 0.471 0.619
PITA 30.99 % 15.78 % 34.22 % 19.01 % 0.468 0.475 0.620 0.454 0.316 0.538 0.372
mirSVR 13.88 % 36.13 % 13.87 % 36.12 % 0.500 0.500 0.278 0.500 0.723 0.357 0.591
mirDB 06.20 % 47.54 % 02.46 % 43.80 % 0.537 0.714 0.124 0.520 0.951 0.211 0.673
microT 29.47 % 31.66 % 18.34 % 20.53 % 0.611 0.616 0.589 0.607 0.633 0.602 0.620
Paccmit Cons 11.74 % 42.88 % 07.12 % 38.26 % 0.546 0.622 0.235 0.529 0.858 0.529 0.654
Paccmit NonCons 08.39 % 45.80 % 04.20% 41.61 % 0.542 0.666 0.168 0.524 0.916 0.524 0.667
mirza-G Cons 19.75 % 33.06 % 16.94 % 30.25 % 0.573 0.629 0.395 0.524 0.662 0.487 0.584
mirza-G NonCons 18.26 % 35.00 % 15.00 % 31.74 % 0.559 0.620 0.365 0.524 0.700 0.465 0.600
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Table D. Evaluation of the different miRAW configurations and different target prediction methods using the full testing dataset (TS stands for
TargetScan).

TP FP TN FN Accuracy Precision Sensitivity Neg.Precision Specificity F-Score Neg.F-score

miRAW-6-1:10 AE 76.98 % 1.23 % 1.99 % 19.80 % 0.790 0.984 0.795 0.091 0.619 0.880 0.159
miRAW-6-1:10 NF 90.14 % 2.05 % 1.17 % 6.64 % 0.913 0.978 0.931 0.150 0.363 0.954 0.212
miRAW-7-1:10 AE 67.10 % 0.87 % 2.34 % 29.68 % 0.694 0.987 0.693 0.073 0.728 0.815 0.133
miRAW-7-1:10 NF 86.11 % 1.64 % 1.58 % 10.68 % 0.877 0.981 0.890 0.129 0.491 0.933 0.204
miRAW-7-2:10 AE 69.27 % 0.91 % 2.31 % 27.51 % 0.716 0.987 0.716 0.077 0.717 0.830 0.140
miRAW-7-2:10 NF 87.21 % 1.70 % 1.52 % 9.57 % 0.887 0.981 0.901 0.137 0.473 0.939 0.212
miRAW-pita AE 43.33 % 0.45 % 2.77 % 53.45 % 0.461 0.990 0.448 0.049 0.861 0.617 0.093
miRAW-pita NF 71.84 % 0.90 % 2.32 % 24.95 % 0.742 0.988 0.742 0.085 0.721 0.848 0.152
miRAW-ts AE 38.48 % 0.35 % 2.86 % 58.31 % 0.413 0.991 0.398 0.047 0.891 0.567 0.089
miRAW-ts NF 67.89 % 0.86 % 2.35 % 28.89 % 0.702 0.987 0.701 0.075 0.732 0.820 0.137
TS Conserved 12.29 % 0.19 % 3.02 % 84.50 % 0.153 0.984 0.127 0.035 0.940 0.225 0.067
TS Non-Conserved 38.37 % 0.90 % 2.32 % 58.42 % 0.407 0.977 0.396 0.038 0.721 0.564 0.072
PITA 58.67 % 2.20 % 1.02 % 38.12 % 0.597 0.964 0.606 0.026 0.316 0.744 0.048
mirSVR 25.21 % 0.89 % 2.32 % 71.57 % 0.275 0.966 0.260 0.031 0.723 0.410 0.060
mirDB 11.58 % 0.16 % 3.06 % 85.20 % 0.146 0.987 0.120 0.035 0.951 0.213 0.067
microT 56.80 % 1.18 % 2.04 % 39.98 % 0.588 0.980 0.587 0.048 0.633 0.734 0.090
Paccmit Cons 25.21 % 0.89 % 2.32 % 71.57 % 0.275 0.966 0.260 0.031 0.723 0.410 0.060
Paccmit NonCons 11.58 % 0.16 % 3.06 % 85.20 % 0.146 0.987 0.120 0.035 0.951 0.213 0.067
mirza-G Cons 31.49 % 0.60 % 2.62 % 65.29 % 0.341 0.981 0.325 0.039 0.814 0.489 0.074
mirza-G NonCons 33.77 % 0.67 % 2.54 % 63.01 % 0.363 0.980 0.349 0.039 0.790 0.515 0.074
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