Supplementary Text S1:

3

² Pseudo-code of the adapted EXTRANDE algorithm

1 F	Precomputation :
2 (Compute target-site pharmacokinetic profile D_s for $s \in [0, T]$
3 I	nitialization :
4 <i>t</i>	= 0 # Initial time of the system
5 Y	$Y = Y_0 $ # Initial state of the stochastic system
6 V	vhile true do
	# Determine upper bound for the sum of reaction propensities
7	$B = a_0(Y_t, \emptyset) = \sum_{k=1}^{K} a_k(Y_t, \emptyset)$ # Sum of reaction propensities in absence of antivirals
	# Generate putative reaction time i.e $\tau \sim Exp(1/B)$:
8	$r_1 \sim \mathcal{U}(0,1)$ # Sample from a uniform distribution
9	$\tau \leftarrow \frac{1}{B} \cdot \log\left(\frac{1}{r_1}\right)$ # Transformation to an exponential distribution
10	$t \leftarrow t + \tau \#$ Update time
11	$a_0 \leftarrow \sum_{k=1}^{K} a_k(Y_t, D_t) $ # Sum of all stochastic reaction propensities at time t
12	$r_2 \sim \mathcal{U}(0,1)$ # Sample from a uniform distribution
13	if $a_0 \ge B \cdot r_2$ then
	# 'Acceptance Step' - a reaction fires changing the state.
	# Choose the reaction, i.e.
14	the smallest positive integer j such that $\sum_{k=1}^{j} a_k(Y_t, D_t) \ge B \cdot r_2$
15	if reaction R4 or R5 is chosen then
16	$ r_3 \sim \mathcal{U}(0,1)$
17	if $r_3 \leq p_{M a_4}$, respectively $r_3 \leq p_{L a_5}$ then
	# a long lived/latently infected cell emerged.
18	Stop the simulation
19	end
20	end
21	$Y_t \leftarrow Y_t + v_j $ # Update the state of the system
22	if $Y_t = 0$ then
	# Extinction event - the trajectory has reached the absorbing extinction state.
23	Stop the simulation
24	else
	# Compute the extinction probability of state Y_t and drug concentration D_{max}
25	Compute D_{max} for the current time t
26	if $P_{\rm E}(Y_t, D_{max}) < \varepsilon$ then
	# Infection event
27	Stop the simulation
28	else
	# The trajectory at time <i>t</i> is within the extinction simplex.
29	end
30	end
31	else
	# 'Rejection Step' - Extra reaction fires without changing the state.
32	end
33 e	nd
	porithm 1: Adapted Extra Reaction Algorithm for Networks in Dynamic Environments (EX-

Algorithm 1: Adapted **Ext**ra **R**eaction **A**lgorithm for **N**etworks in **D**ynamic **E**nvironments (EX-TRANDE) for estimating the infection/extinction probability for time-varying drug effects.