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Steady-state analysis
Steady-state analyses of Eqs 1–6, in the absence of clearance, with and without a single dose of inhibitors were
performed using Maple. Clearance was neglected since leakage of fluid from the wound only occurs in the first
24 hours. It was found that the system has two physically realistic steady-states in both the untreated and single
inhibitor dose scenarios for all 12 parameter sets. In the untreated scenario, the first steady-state, (B∗F1

,B∗B1
) = (0,0),

corresponds to the complete absence of bacteria and can be classified as a saddle-node in all cases, with an unstable
manifold directed into the positive quadrant. For the second steady-state, (B∗F2

,B∗B2
), we have that B∗F2

> 0 and B∗B2
> 0

in all cases. Depending upon the parameter set, this steady-state takes the form of either a stable improper node or a
stable spiral (see Table A in S2 Supporting Information).

In the treated scenario, since we are neglecting clearance, the total number of inhibitors (AT = VAF(t) + ArAB(t) =

VAFinit ) is conserved. Therefore, we may substitute for AB(t) as AB(t) = h(AFinit − AF(t)) into Eqs 1–4, reducing the
problem to the following three-dimensional system:
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dAF
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= −αAArAF E +βA(AFinit −AF). (C)

This system has two steady-states; the first, (B∗F1
,B∗B1

,A∗F1
) = (0,0,A∗F1

), where A∗F1
> 0, corresponds to the com-

plete absence of bacteria and can be classified as a saddle node (with either one or two unstable manifolds) in all
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Figure A: Steady-state solutions to Eqs 1–6 with and without a single dose of inhibitor. Three stacked bars are plotted
for each case: the first bar shows the number of free and bound bacteria, B̂∗F2

= VB∗F2
and B̂∗B2

= ArB∗B2
, at steady-

state in the untreated scenario; the second gives the number of free and bound bacteria at steady-state in the single
inhibitor dose scenario, and the third shows the number of free and bound inhibitors, Â∗F2

= VA∗F2
and Â∗B2

= ArA∗B2
, at

steady-state in the single inhibitor dose scenario. The combined height of each stacked bar gives the total number of
bacteria or inhibitors, B∗T2

= B̂∗F2
+ B̂∗B2

and AFinit = Â∗F2
+ Â∗B2

. Treatment results in a decrease in B∗T2
in Cases A and

B, an increase in B∗T2
in Case C and has little effect on B∗T2

in Case D. The ratio of free to bound inhibitors is similar in
Cases A and B, and varies in Cases C and D. Steady-state solutions were obtained by solving Eqs 1–8 using ode15s,
allowing the system to evolve until it reached steady-state. The problem was solved in the absence of clearance, such
that ψ̃Bac = 0 and ψ̃A = 0. See Tables 1 and 2 for the remaining parameter values.

cases. For the second steady-state, (B∗F2
,B∗B2

,A∗F2
), we have that B∗F2

> 0, B∗B2
> 0 and A∗F2

> 0 in all cases, though
B∗B2

is tiny by comparison with B∗F2
and A∗F2

for Cases A and B (see Fig A, and Fig C in S2 Supporting Information,
where B∗B2

is too small to be visible in Cases A and B). This steady-state takes the form of a stable improper node
(three non-identical real negative eigenvalues) for all parameter sets, except Set 8, where it is a stable spiral (one real
negative eigenvalue and a pair of complex conjugate eigenvalues with negative real part).

The discovery that the stable steady-state may take the form of a node or a spiral may be of value in identifying
the most accurate parameter set, if it were possible to take highly resolved experimental measurements, so as to detect,
or rule out, oscillations in the bacterial population size. We note, however, that experimental error might render
observations of oscillations difficult.

The steady-state solutions in the untreated and single inhibitor dose scenarios are summarised in Fig A, and Fig
C in S2 Supporting Information. Treatment results in a decrease in the total number of bacteria in Cases A and B,
as might be expected from the experimental results (see Fig 2); however, it results in an increase in Case C and has
little effect on the total population size in Case D. These latter two results are unexpected, suggesting that in some
situations treatment with inhibitor could be detrimental in the long-term. We discuss this further in the numerical
solutions section of the main text. The ratio of free inhibitors to bound inhibitors is consistent across all parameter
sets in Cases A and B, but varies across parameter sets in Cases C and D, with a lower proportion of bound inhibitors
in Cases C and D.
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