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S2 Appendix. Balance and imbalanced amplification in a model with conductance-
based synaptic and optogenetic inputs

In the main text, we considered a neuron model with current-based synapses and a current-
based model of optogenetic stimulation. We now show that our results are easily adapted to a
conductance-based adaptive exponential integrate-and-fire (AdEx) model. This model is identical
to the one used in the main text, but the voltage-independent input current, Iaj (t) to neuron
j = 1, . . . , Na in population a = E, I from that model is replaced by a voltage-dependent input
current given by

Iaj (V, t) = gaEj (t)[EE − V (t)] + gaIj (t)[EI − V (t)] + gaXj (t)[EE − V (t)] + gaChR2
j (t)[EChR2 − V (t)]

where gabj (t) is the conductance of type b = E, I,X,ChR2 and Eb is the associated reversal poten-

tial. Note that gIChR2
j (t) = 0 since inhibitory neurons do note express ChR2 in our model. The

synaptic conductances (b = E, I,X) are given by

gabj (t) =

Nb∑
k=1

Jabjk
∑
n

ηb(t− tb,kn ) (S.1)

where a = E, I is the postsynaptic cell population, b = E, I,X is the presynaptic cell population,
and ηb(t) = (1/τb)e

−t/τbΘ(t) is a postsynaptic conductance waveform (identical to the current
waveforms used in the main text). When optogenetic stimulation is on, gEChR2

j (t) = s for expressing

neurons, j, but gIChR2
j (t) = 0 to represent pyramidal-cell specific expression of ChR2.

The mean-field analysis in the main text relies on an assumption that currents add linearly,
which is not true for this conductance-based model. However, the analysis can be recovered under a
formalism in which the conductance-based model is approximated by a current-based one [1, 2, 3].
We review this approximation further below, but first give the conclusions and resulting firing rate
approximations.

For the two-population case (one excitatory and one inhibitory population, as in Fig. 1 and the
surrounding discussion, this approximation gives rise to an approximate “effective” current,

Ieff =
1

ε

[
W effr + Xeff

]
, (S.2)

which generalizes Eq. (1) from the main text. Here,

ε =
1

(EE − V0)KEXJEX
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X = W eff
X rX +

[
seff

0

]
,

W eff =

[
weffEE weffEI

weffIE weffII

]
and WX =

[
weffEX

weffIX

]
,

weffab =
(Eb − V0)KabJab

(EE − V0)KEXJEX
,

and
seff = (EChR2 − V0)s.

This is identical to the current-based analysis, except connection strengths and optogenetic currents
are scaled by the distance of their associated reversal potentials to V0. An identical generalization
applies to the analysis in which excitatory neurons are broken into ChR2-expressing and non-
expressing populations (as in Fig. 2 and surrounding discussion) and to spatially extended networks
(as in later figures). Here, V0 represents the mean membrane potential across neurons and time,
which we computed from simulations. Hence, this analysis requires that simulations be performed
first, which reduces its applicability for predictive purposes, but still works for understanding how
balance and imbalanced amplification occur in conductance-based models, which is our main goal
here.

The analysis of firing rates then proceeds as before. Balanced firing rates are given by

r = −[W eff ]−1Xeff

which only exist when W eff is invertible (or when W is not invertible, but X is in its column
space). The linear correction to balance is given by

r = [εD −W eff ]−1Xeff

where D is the same as before. We applied this analysis to conductance-based versions of Figs. 1-2
from the main text and found that it was similarly accurate and imbalanced amplification was
similarly observed (Supporting Figure 1).

We now review the approximation from which the effective current in Eq. (S.2) was derived.
Consider the AdEx membrane potential dynamics defined by

Cm
dV

dt
= −gL(V − EL) + I(V, t) + gL∆T exp[(V − VT )/∆T ]− w

where I(V, t) is the conductance-based input defined above. This can be re-written as

Cm
dV

dt
= −geff (t)(V − V0) + Ieff (t) + gL∆T exp[(V − VT )/∆T ]− w

where
geff (t) = gL + gE(t) + gI(t) + gX(t)

and

Ieff (t) = gL[EL−V0]+gE(t)[EE−V0]+gI(t)[EI−V0]+gX(t)[EE−V0]+gChR2(t)[EChR2−V0] (S.3)
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Supporting Figure 1: Figures 1 and 2 reproduced in a model with conductance based synapses.
a-d) Same as Fig. 1 a-d of the main text, but with a conductance-based synapse model. g-l) Same as
Fig. 2a-h of the main text, but with a conductance-based model. Reversal potentials were EE = EChR2 =
0mV and EI = −100mV. Connections were chosen randomly in the same way as in the main text with
connection weights chosen to give similar postsynaptic potential amplitudes when the membrane potential
starts near −65mV. This was achieved at JEE = 0.0062Cm, JEI = JII = 0.1675Cm, JIE = 0.0129Cm,
JEX = JIX = 0.0072Cm. The optogenetic conductance was also chosen to produce a similar current at
−65mV by setting s = 0.0308Cm/ms.

where V0 can be any arbitrary reference voltage. Note that Ieff (t) is not voltage-dependent, but
the model is still conductance-based due to the appearance of the geff (t)(V − V0) term. The
idea behind the approximation is as follows: When V0 is chosen close to the steady-state mean
membrane potential, the balance of excitatory and inhibitory currents implies that Ieff (t) is much
smaller on average than the positive excitatory and negative inhibitory contributions to it. Thus,
the variability in the conductances, gb(t), contribute much to Ieff (t). On the other hand, the
excitatory and inhibitory contributions to geff (t) are both large (O(1/ε)) and positive. Thus their
mean values are much larger than their variability, even in the balanced regime. This argument
motivates the substitution of geff (t) with its mean value, leading to current-based approximation

Cm
dV

dt
= −geff (V − V0) + Ieff (t)

where

geff = gL + gE + gI + gX + gChR2

is the steady-state mean conductance. Taking means in Eqs. (S.3) and Eq. (S.1) gives Eq. (S.2).
Note that geff is O(1/ε), so neurons become highly conductive (leaky) for small ε [1, 2, 3]. As a con-
sequence, membrane potentials track synaptic nearly perfectly (without substantial lag or filtering)
when ε is small because the effective membrane time constant of neurons is τeff = Cm/geff ∼ O(ε).
However, the timescale of network dynamics is still limited by the synaptic time constants, τb, which
determine the timescales of the synaptic conductance waveforms, ηb(t).
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