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Group effect Mean of the precision estimate

Season 49.92
Region 15.29
State 5.08
County 21,951.48
County spatial dependence 1.63
Observation error 18,175.80

Table A. Comparison of the mean precision estimates for group effects in the intensity models, where precision is
the inverse of the variance.

1 Ethics and data access
Patient records and information in the medical claims dataset were anonymized, de-identified, and aggregated
by IMS Health, a data analytics firm that packages data that is routinely collected for health insurance purposes
for commercial use. While the database is not accessible online, interested researchers should refer to the IMS
Health (now IQVIA) website: https://www.iqvia.com/. All analyses were performed with aggregated time series
data for influenza-like illness rather than patient-level information. Similar to other epidemiological analyses of
administrative insurance data, no institutional review board approval was sought.

2 Epidemic intensity surveillance models

2.1 Surveillance model and spatial predictors
We assessed model diagnostics and surveillance outputs for the total population epidemic intensity model(Figure A,
Figure B, Figure E). We examined the mean precision estimates for the group effects —season, region, state, county,
county spatial dependence, observation error —to identify which effects explained most of the variability across
observations (Table A).

Figure A. Observed vs. fitted means for log epidemic intensity (Pearson’s R = 0.86). The 45 degree line is in grey.
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Figure B. Residuals vs. fitted means for the total population log epidemic intensity.

Figure C. 95% credible intervals for state group effects for the total population epidemic intensity model.

2.2 Influenza surveillance and spatial patterns
We examined the spatial and temporal patterns for the epidemic intensity model (Figure 2, Figure C, Figure D,
Figure E).

2.3 Selection for spatial dependence terms
To determine county-level spatial neighbors, we started with the 2010 U.S. Census Bureau 500k resolution county
shapefile, and connected abutting counties that were separated by bodies of water. We then used the clean shapefile
to identify neighbors as counties that shared borders.

To define state-level spatial neighbors, monthly air travel passenger flows were collected from the Bureau of Trans-
portation Statistics T-100 Domestic Market (U.S. Carriers) table from their website at http://www.transtats.bts.gov/.
Airport flows were aggregated to the state-level and states were neighbors if passengers traveled between them from
November 2007 through April 2008.

Models with the county only or county and state-level spatial dependence terms had the lowest DIC (Table B).
As none of the spatially-structured state-level coefficients were significantly different from zero, we chose to use
models with county-level dependence only.
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Figure D. 95% credible intervals for HHS region group effects for the total population epidemic intensity model.

Spatial dependence structure DIC

None (no φ terms) 40,932
County only (bordering neighbors, φi) 40,070
State only (flight passenger flows, φ j) 40,933
County and state together (φi and φ j) 40,070

Table B. Comparison of total epidemic intensity models with different spatial dependence structures and random
effects according to Deviance Information Criterion (DIC).

2.4 Validation to CDC surveillance data
We collected a) the percentage of ILI out of all patient visits among the total population, and child and adult
populations as reported by CDC’s ILINet, and b) the percentage of positive influenza laboratory confirmations
as reported by CDC laboratory surveillance. We note that child and adult ILI percentage was calculated with a
denominator of patient visits across all age groups due to limited data availability. Both CDC surveillance systems
were reported at the HHS region level and aggregated cumulatively for each flu season in our study period. We
then examined scatterplots and Pearson cross-correlation coefficients (double-sided test where Ho = no difference)
between the mean model fits for epidemic intensity (where we took the mean across all counties in a given HHS
region) and each CDC surveillance dataset (Figure G, Figure H, Figure I, Figure J). Results were similar to those
reported for medical claims ILI intensity in Viboud et al. 20141.

2.5 2009 pandemic surveillance model and spatial predictors
We developed a separate model to characterize the spatial and temporal patterns of the fall wave of the 2009 H1N1
pandemic in the United States (Figure K, Figure L, Figure N). Using medical claims data from October 2002 to
April 2010, we calculated epidemic intensity for the fall wave by adjusting the methodology we used to define
disease burden; the flu period was defined as August through January instead of November through April during
the pandemic year. In addition, we modified some of the predictors included in our model. Specific humidity and
pollution measurements were averaged across the modified flu period from August through January as opposed to the
original flu period of November through April. Toddler and elderly vaccination coverage were removed as predictors
and replaced with estimates of child (6 months through 17 years) and adult (18 years and above) monovalent 2009
pandemic vaccination coverage; these state-level estimates were derived jointly from the CDC’s National 2009
H1N1 Flu Survey (NHFS) and the Behavioral Risk Factor Surveillance System (BRFSS)2. Prior immunity was
calculated as the sum of the adult and elderly proportions of the population multiplied by the reported proportion of
pre-2009 serum with cross-reactive antibodies in those age groups3. Influenza circulation predictors were removed
from the model because they should not have applied to the pandemic season. All other predictors were the same as
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Figure E. Continental U.S. county maps for observed (left) and fitted (right) log epidemic intensity in seasons from
2002-03 through 2008-09.

6/33



Figure F. 95% credible intervals for the state-level spatially structured coefficients when modeling intensity with
state-level spatial dependence (φ j). None of the spatially structured state coefficient distribution were significant.

Figure G. Mean epidemic intensity model fit averaged across counties in a given HHS region vs. percentage of
positive influenza laboratory confirmations in a given HHS region and flu season. The Pearson cross-correlation
coefficient was 0.35 with a p-value of 0.003 for a double-sided hypothesis test.
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Figure H. Mean epidemic intensity model fit averaged across counties in a given HHS region vs. cumulative
percentage of ILI visits in a given HHS region for all age groups. The Pearson cross-correlation coefficient was 0.38
with a p-value of 0.001 for a double-sided hypothesis test.

Figure I. Mean epidemic intensity model fit averaged across counties in a given HHS region vs. cumulative
percentage of ILI visits in a given HHS region for children. The Pearson cross-correlation coefficient was 0.42 with
a p-value of 0.0002 for a double-sided hypothesis test.

8/33



Figure J. Mean epidemic intensity model fit averaged across counties in a given HHS region vs. cumulative
percentage of ILI visits in a given HHS region for adults. The Pearson cross-correlation coefficient was 0.42 with a
p-value of 0.0003 for a double-sided hypothesis test.

Group effect Mean of the precision estimate

State 3.66
County (Observation error) 5.65

Table C. Comparison of the mean precision estimates for group effects in the pandemic model, where precision is
the inverse of the variance.

those used for the 2008-2009 influenza season. We excluded the county-level spatial dependence term because the
model fit was better without it.

We examined the mean precision estimates for the group effects —state, county (same as observation error in
this model) —to identify which effects explained most of the variability across observations in the pandemic model
(Table C). State group effects (Figure M) then county effects explained the greatest amount of variability across
pandemic model observations.

2.6 State seasonal intensity surveillance model
We developed a state-level epidemic intensity model to compare to our county-level epidemic intensity model
(Figure O). All spatial predictors included in the county surveillance model were collected or aggregated to the state
spatial unit of analysis and the expected epidemic intensity was recalculated from state-level epidemic intensity
observations. The state surveillance model had the same structure as the county surveillance model but for the
exclusion of the county group effects. We also excluded the state-level spatial dependence term because the model
fit was better without it.
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Figure K. For the pandemic intensity model, these are the means and 95% credible intervals for the posterior
distributions of the socio-environmental coefficients.

Figure L. For the pandemic intensity model, these are the means and 95% credible intervals for the posterior
distributions of the measurement coefficients.

Figure M. 95% credible intervals for state group effects for the pandemic intensity model.
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Figure N. Continental U.S. county map for observed (left) and fitted (right) log epidemic intensity during the fall
wave of the 2009 H1N1 pandemic.

3 Sentinel surveillance design

3.1 Comparison of county and state spatial units of analysis
We compared the difference between the fitted value outputs of the state and county surveillance models to
examine the added value of county-level information (Figure P). We also note that states with a larger magnitude
of aggregation bias (error) have greater within-state heterogeneity in epidemic intensity (Pearson’s correlation
coefficient is 0.67, p-value < 2E-16, Ha = Linear correlation is statistically different from 0) (Figure Q). Absolute
magnitude of aggregation bias was calculated as the sum of the absolute value of the error for all counties in a given
state, where error is defined as the difference between the fitted log epidemic intensity for the state and county
surveillance models. Within-state heterogeneity was indicated with the variance of the posterior means for fitted
epidemic intensity derived from the county models across all counties in a given state.

3.2 Thresholds to identify match
We examined the empirical distribution of matched replicates (interquartile ranges of the fitted posterior distributions
between the complete model and model with missingness do not overlap) by flu season for each level of missingness
among sentinels in fixed locations (Figure R). At the lowest level of missing data examined (i.e., 80% of counties
reporting data), nearly 90% of counties had matches in 9 of 10 replicates. Using this information, we set the threshold
for match at 90% of county-season observations.

3.3 Sentinels in moving locations
We report the results for sentinels in moving locations (Figure S, Figure T) and inclusion of historical data (Figure U,
Figure V) as described in Fig 4.

3.4 Out-of-sample validation
Models performed for the sentinel surveillance design analysis were also used in an out-of-sample validation
procedure. For each sequence of missingness, we compared the fitted values to the known observation for all
observation-replicates that were excluded from the model fitting procedure (Figure W, Figure X, Figure Y). These
figures are pooled across different levels of missing data for a given sequence of missingness (e.g., fixed-location
sentinels). If there is a strong linear relationship between the ‘observed and excluded’ values and the fitted values,
the model performs well on observations that are ‘out-of-sample.’
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Figure O. Continental U.S. state maps for observed (left) and fitted (right) log epidemic intensity in seasons from
2002-03 through 2008-09.
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Figure P. Aggregation bias between county and state epidemic intensity surveillance models for all seasons in the
study period, where aggregation bias is defined as the difference between fitted values for county and state log
epidemic intensity. Negative error (blue) indicates that the state-level surveillance model underestimated risk
relative to the county-level surveillance model, and vice versa.

Figure Q. Scatterplot demonstrating that within-state heterogeneity of epidemic intensity increases as aggregation
bias increases, where each data point represents a single state-season combination.
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Figure R. Line plot showing the percentage of counties with at least x matched replicates by season for
fixed-location sentinel models. Each panel displays results from a different level of missingness (2.5% of counties
reporting data in the top left, to 80% of counties reporting data in the bottom left).

Figure S. Diagram indicating changes to model inference as fewer moving-location sentinels reported data.
Predictors with no significant effect across the sequence of models were removed for viewing ease, and absence of a
dot means the effect was not significant across any replicates.
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Figure T. Map of model prediction match between the complete model and the 60% and 80% missing levels for
moving-location sentinels. Failure to match means that the interquartile ranges for two posterior distributions failed
to overlap with each other in at least one replicate.

Figure U. Diagram indicating changes to model inference as historical seasons were randomly removed from the
model. Predictors with no significant effect across the sequence of models were removed for viewing ease, and
absence of a dot means the effect was not significant across any replicates.

Figure V. Map of model prediction match between the complete model and models missing one, three, or five
historical flu seasons. Failure to match means that the interquartile ranges for two posterior distributions failed to
overlap with each other in at least one replicate.
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Figure W. Scatterplot between original observation and fitted value among observations that were excluded from
fixed-location model replicates.

Figure X. Scatterplot between original observation and fitted value among observations that were excluded from
moving-location model replicates.
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Figure Y. Scatterplot between original observation and fitted value among observations that were excluded from
historical-season model replicates.

Group effect Mean of the precision estimate

Season 18.00
Region 137.78
State 113.46
County 29,988.82
County spatial dependence 13.32
Observation error 14.00

Table D. Comparison of the mean precision estimates for group effects in total epidemic duration models, where
precision is the inverse of the variance.

4 Epidemic duration surveillance models

4.1 Surveillance model and spatial predictors
We assessed model diagnostics for the total population model for epidemic duration (Figure Z, Figure AA).
We examined the mean precision estimates for the group effects —season, region, state, county, county spatial
dependence, observation error —to identify which effects explained most of the variability across observations
(Table D).

Socio-environmental and measurement drivers
We incorporated socio-environmental and measurement-related determinants into the total population epidemic
duration model (Figure AB, Figure AC).

4.2 Influenza surveillance and spatial patterns
We examined the spatial and temporal patterns for the epidemic duration model (Figure 2, Figure AD, Figure AE,
Figure AF).
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Figure Z. Observed versus fitted means for epidemic duration in weeks (Pearson’s R = 0.71). The 45 degree line is
in grey.

Figure AA. Residuals versus fitted values for epidemic duration.
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Figure AB. For the total population epidemic duration models, these are the 95% credible intervals for the
posterior distributions of the socio-environmental coefficients.

Figure AC. For the total population epidemic duration models, these are the 95% credible intervals for the
posterior distributions of measurement-related coefficients.

Figure AD. 95% credible intervals for state group effects for the epidemic duration model.
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Figure AE. 95% credible intervals for HHS region group effects for the epidemic duration model.

4.3 Comparison of epidemic duration and epidemic intensity
We compared the epidemic duration and epidemic intensity fitted values and observations and fitted values (Fig-
ure AG).

5 Epidemic intensity surveillance models for children and adults

Children and adults comprise the largest components of the U.S. population, and many studies have considered shifts
in immunity due to differences in contact patterns, shifting risk between children and adults over time, interactions
between influenza types/subtypes by age, and differences in vaccine effectiveness by age group4–9. Considering
the potential to elucidate age-specific processes and improve targeting of public health interventions, we used the
multi-season model to examine drivers of epidemic intensity in the child and adult populations.

5.1 Surveillance model and spatial predictors
Both models appeared to fit the observed epidemic intensity well. The Pearson’s cross-correlation coefficient
between the observed and fitted mean relative risk was R = 0.89 and R = 0.90 for the child and adult epidemic
intensity models, respectively (Figure AH). For both age groups,

Socio-environmental and measurement factors
In reference to the total epidemic intensity results, the child and adult models shared the same significant positive
associations for the interaction term between child population and influenza B circulation and a proxy for prior
immunity, and the same significant negative associations for adult and child population sizes, average flu season
specific humidity, proportion of single person households, and infant vaccination coverage (Figure AI). The child
and adult models shared a positive association with hospitals per capita where the total population model had no
effect, and a negative association with estimated average household size where the total population model had a
positive effect.

Child population epidemic intensity had a unique positive association with influenza B circulation and a unique
negative association with elderly vaccination coverage. Adult population epidemic intensity had unique positive
associations with H3 circulation among influenza A, proportion of the population in poverty, and elderly vaccination
coverage, and a unique negative association with the interaction between adult and influenza H3.

Similar to the total population models, the child and adult epidemic intensity models had significant positive
associations with care-seeking behavior and claims database coverage. However, both the child and adult epidemic
intensity models had significant negative associations with proportion of the population with health insurance, where
the total population model demonstrated no effect.
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Figure AF. Continental U.S. county maps for observed (left) and fitted (right) epidemic duration in weeks from
2002-03 through 2008-09.
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Figure AG. Comparison of epidemic duration and log epidemic intensity among observed (left) and fitted (right)
values.
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Figure AH. Comparison of observed and fitted mean relative risk of epidemic intensity across flu seasons from
2002-2003 through 2008-2009 for children (Pearson’s R = 0.89) and adults (Pearson’s R = 0.90).

Figure AI. Diagram comparing model inference between total, child, and adult seasonal intensity. Predictors with
no significant effect across the three models were removed for viewing ease, and absence of a dot means the effect
was not significant.
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Predictor VIF

humidity 1.78
pollution 1.42
popDensity 1.16
householdSize 2.07
child 2.93
adult 2.07
toddlerVacc 1.66
elderlyVacc 1.84
priorImmunity 1.03
fluH3 1.59
fluB 1.19
adult-fluH3 1.10
child-fluB 1.01
hospAccess 1.33
onePersonHH 1.79
poverty 1.44
insured 1.78
claimsCoverage 1.51
careseeking 1.07

Table E. Variance Inflation Factors among final model predictors.

5.2 Influenza surveillance and spatial patterns
We examined the spatial patterns for the child and adult epidemic intensity models (Figure AJ, Figure AK). Similar
to results for the total population, several South Atlantic states had greater risk while Plains states had lower risk of
epidemic intensity for both children and adults (Figure AL, Figure AM).

6 Model predictors

6.1 Checks for multicollinearity
We checked for multicollinearity among predictors by examining Spearman rank cross-correlation coefficients
between all pairs of final model predictors, excluding interaction terms (Figure AN). No single pair had a linear
correlation coefficient that exceeded a magnitude of 0.6.

We also assessed multicollinearity among the final set of predictors in our model according to the rule of thumb
that Variance Inflation Factors (VIFs) should be less than 10. No predictors violated this rule of thumb and VIFs are
listed in table Table E.

Additionally, we ran our epidemic intensity model with each coefficient individually (Figure AO). Multi-
collinearity between predictors may sometimes be detected when a predictor significantly deviates from zero in the
single predictor model, but does not appear to have an effect in a multivariate context. Some predictors (pollution,
popDensity, fluB) that were significant in the single predictor context no longer had an effect in our complete model
(and vice versa for householdSize and child). Nevertheless, all of these predictors had small effect sizes in both
single variable and multivariate models, and the other predictors that were significant in both models retained effect
sizes with the same order of magnitude and directionality.

6.2 Medical claims coverage
Medical claims database coverage increased over time across each state (Figure AP).
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Figure AJ. Continental U.S. county maps for observed (left) and fitted (right) log epidemic intensity among
children in weeks from 2002-03 through 2008-09.
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Figure AK. Continental U.S. county maps for observed (left) and fitted (right) log epidemic intensity among adults
in weeks from 2002-03 through 2008-09.
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Figure AL. 95% credible intervals for state group effects for the child epidemic intensity model.

Figure AM. 95% credible intervals for state group effects for the adult epidemic intensity model.

7 Data processing

7.1 Defining influenza disease burden
Disease burden was assessed after processing the medical claims data as described in the Methods section. Time
series data detrending and identification of the influenza epidemic period are graphically depicted in Figure AQ.

7.2 Prior immunity tables
For seasonal influenza years, we calculated a proxy for prior immunity that is described in detail in the Methods.
Here, we present our proxy for the proportion of individuals infected in the previous influenza season that would have
protection during the current season, after accounting for the distribution of circulating influenza strains (Table F).
As strain circulation is reported by CDC by HHS regions, that is the spatial resolution of these data.

HHS Region 1 2 3 4 5 6 7 8 9 10

2002-2003 .19 .15 .095 .14 .29 .066 .13 .30 .26 .22
2003-2004 8E-4 0 7E-4 0 0 0 0 0 0 0
2004-2005 4E-6 0 7E-6 0 0 0 0 0 0 0
2005-2006 .63 .63 .43 .67 .58 .55 .66 .50 .35 .46
2006-2007 .037 .059 .13 .043 .053 .065 .084 .020 .061 .021
2007-2008 0 0 0 0 0 0 0 0 0 0
2008-2009 .028 .029 .015 .055 .011 .022 .018 .012 .048 .018

Table F. Population-weighted average for a proxy of prior immunity that captures the proportion of individuals
infected in the previous flu season that would have protection during the current flu season, accounting for the
distribution of circulating flu strains. The prior immunity model predictor was calculated as the product of the below
proportions and the seasonal intensity of the immediately preceding influenza season in a given county.
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Figure AN. Spearman rank cross-correlation matrix for all pairs of final model predictors.
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Figure AO. These are the 95% credible intervals among multi-season models with a single predictor for epidemic
intensity.

7.3 Comparison to alternative data processing steps
Due to concerns regarding spatial variation in care-seeking, we processed the medical claims data with an alternative
ILI measure (ILI ratio), which was defined as the percentage of total visits due to ILI (ILI/total visits * 100). This
alternative measures, due to its normalization by total visits, adjusts for observation biases due to insurance coverage,
medical claims database coverage, care-seeking behavior, and population size. We investigated the Spearman rank
correlation coefficients between our primary ILI measure, which is population-normalized, and ILI ratio, and found
a strong positive correlation between the two (ρ = 0.79, p-value ¡ 2.2E-16) .
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Figure AP. Medical claims database coverage by year and state. Colors represent states that belong to the same
HHS region. The black horizontal line at 20% effective physician coverage is a visual guide to ease the comparison
of data across panels.
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Figure AQ. Graphical representation of the data processing steps performed for two example county-level time
series (top to bottom). ILI rate per 10K represents the raw ILI reports in the medical claims (first row of figures).
These data were detrended through subtraction according to the LOESS fit (black line in second row) to get the
detrended ILI (third row). All negative values were replaced with zero among the detrended ILI. A seasonal
regression model (black line in fourth row) was fit to weeks outside of the potential flu season period (salmon
segments in fourth row) and used to identify the true influenza epidemic period for each county (blue segments in
fifth row).
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Figure AR. Graphical representation of the data processing steps performed for two example county-level time
series (top to bottom). ILI rate per 10K represents the raw ILI reports in the medical claims (first row of figures).
These data were detrended through subtraction according to the LOESS fit (black line in second row) to get the
detrended ILI (third row). All negative values were replaced with zero among the detrended ILI. A seasonal
regression model (black line in fourth row) was fit to weeks outside of the potential flu season period (salmon
segments in fourth row) and used to identify the true influenza epidemic period for each county (blue segments in
fifth row).
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