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I. CONSTRUCTING THE PIECEWISE-DETERMINISTIC MARKOV PROCESS (PDMP)

In the individual-based description of complex genetic networks studied in the present work, one models each
individual reactive events as a Markov jump processes. The underlying master equation governing the Markvoian
evolution of the entire network is analytically intractable and in general even numerical simulations quickly become
computational inefficient once dimensionality of the system becomes too high[1]. Specifically what contributed to
this inefficiency is the population scale of transcription factors for which it is common to have values on the order of
Ω = 104 as is characteristic for biological cells. Thus the use of standard continuous-time Monte Carlo [2, 3] sampling
techniques becomes unfeasible especially if one wants to sample the kinetic parameter regimes for finding optimal set
of rate coefficients.

Fortunately the latest efforts of modeling gene expression dynamics [4–10] have lead to the emergence of a new class
of techniques which are broadly based on using a piecewise-deterministic Markov process (PDMP) to approximate
the individual-based model with a switching property. In this section, we briefly recapitulate the construction of the
PDMP. A more thorough analysis can be found in the literature cited [4–10] .

A PDMP is a process such that, in between discrete random switching events, the evolution of the process is
deterministic. To construct the deterministic evolution of the TF populations, starting from the chemical master
equations, we performed Kramers–Moyal expansion [1, 11] in the population of TFs while maintaining the discreteness
of the genetic state; we keep only the first order of the expansion. The result is a standard Liouville equation governing
the deterministic flow of the distribution. The joint probability distribution of our model converges to the deterministic
flow in a given genetic state and in the thermodynamic limit Ω→∞ [11]. With the PDMP approach, the demographic
noise originating from random birth-death events are neglected, so that the population density xi(t) of each TF evolves
according to

d

dt
xi(t) = αi − γxi(t), (1)

where αi ∈ {0, αm, αmax} is the production rate of the ith TF dependent on the ith gene’s configuration of promoter
sites. While the evolution of the TF population density is deterministic, the binding and unbinding events of the
regulating TFs to their target genes are still stochastic and formulated according to Eq. 1 in the main text.

We finally emphasize that the PDMP only retains the contribution of switching noise which arise from the discrete
and stochastic binding and unbinding events between the TFs and the promoter sites, and ignores demographic
stochasticity from the discrete production and degradation processes of the TFs. The PDMP is the limiting process
when the population scale Ω→∞ [7], and the error bound of the description can be rigorously derived to be O(Ω−1)
[12].

II. GENERATING EXACT SAMPLE PATHS OF THE PDMP

To simulate the stochastic binding and unbinding statistics of the promoter sites, accurate waiting times must be
generated. A waiting time exists for each possible stochastic transition; the smallest of these times tells us how long
the system stays in the current configuration of promoter sites, and to which promoter configuration it transitions. In
general, waiting times can be generated by mapping a uniform random variable to a random time using the survival
function. Since in our case the transition rates are functions of dynamical state variables, this involves the numerical
integration of survival functions describing each potential transition [8].

In our case, the simple form of Eq. 1 (and thus of the transition rates) allows us to improve upon this by generating
waiting times without numerical integration, detailed in the next section.
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III. EFFICIENT GENERATION OF WAITING TIMES FOR THE GENETIC SWITCHING

Our approach requires the generation of accurate waiting times, which dictate how long the system stays in the
current configuration of promoter sites, and to which promoter configuration it transitions. In our case the simple
form of the PDMP, and consequently of the transition rates, allows us to generating waiting times without numerical
integration of the survival function.

The TF density of a given type, with an initial condition x0, is described by

x(t) =
α

γ
+

(
x (t = 0)− α

γ

)
exp (−γt) . (2)

We dropped the subscript i for brevity in this section, as all the TFs will be evolving according to the same equation
(but with different α which is determined by the promoter states.) It follows that the survival function—the probability
that the switching time is greater than time t—describing a genetic binding event is given by

S(t) = exp

[
−kon

∫ t

0

x(t′) dt′
]

= exp

{
−kon

γ

[
αt−

(
x (t = 0)− α

γ

)(
e−γt − 1

)]}
.

(3)

To use the inverse method, one generates a random number u ∼ Unif (0, 1) and solves the equation u = S(t) for t.
The solution is a random binding time with the correct distribution.

When the density is monotonically decreasing (x0 > α), the procedure allows one to rigorously generate exact
switching times [13]. This involves generating two independent random numbers u1, u2 ∼ Unif (0, 1) such that the
random time of a binding event t is given by t = min(t1, t2) where

t1 =

{
−γ (log u1) / (αkon) if α 6= 0,
∞ if otherwise.

(4a)

t2 =

{
−γ log {(log u2) / [kon (x0 − α/γ)] + 1} if u2 > exp [−kon (x0 − α/γ)] ,
∞ if otherwise.

(4b)

The case when the density is monotonically increasing u = S(t) is not analytically solvable but can be solved
numerically and with efficiency using the Newton–Raphson scheme. Using these two approaches together, the random
waiting times for the next binding event on gene i can be efficiently sampled.

The unbinding events are independent of the population of TFs. Since each bound TF on a promoter dissociate
independently and identically with a rate koff, the waiting time of each of the dissociating events is exponentially
distributed (∼ Exp (koff)) and can be efficiently generated [2].

At any given point of time and given the state of the system, we can use the above procedures to generate the
random waiting times for binding or unbinding events. Before the first event (i.e., the binding or unbinding event
with the minimal waiting times) takes place, the dynamics of TF evolve deterministically and all the promoter states
remains still. At the time of the next binding or unbinding event, the promoter state corresponding to the fist binding
or unbinding event is updated, and the random waiting times needs to be updated.

IV. NON-DIMENSIONALIZATION OF MODEL PARAMETERS

Under the assumptions we proposed, there are initially six free model parameters: Ωαmax and Ωαm as the production
rates when each of the genes has an “ON” or “MEDIUM” activity, γ as the protein degradation rate, N as the number
of promoter sites, and lastly konΩ−1 and koff as the binding and unbinding rates between the TFs and the promoter
sties. We remark that the population scale Ω is fixed at 104.

Through suitable non-dimensionalization of the physical time and concentrations of the TFs, we reduce the number
of parameters. As can be seen from the above formulation (Eq. 1), the time scale of the TF dynamics is set by the
degradation rate γ. For stable proteins, the time scale of degradation is of the order of the times of the cell cycle.
We therefore choose the unit of physical time such that γ is 1. Similarly, the maximum concentration in the TF can
achieve in Eq. 1 is αmax/γ. We can choose a unit for the concentrations of the chemical species such that αmax = 1,
so the concentration of the TFs are always bounded in (0, 1). After non-dimensionalization, the model ends up with
four free parameters: αm ∈ {0, 1} as the intermediate production rate of those genes which are regulated by both
activators and repressors, kon, koff as the binding and unbinding rate of the TF to the promoter sites, and N as
the number of promoter sites per gene. We use these non-dimensionalized parameters to report our results in the
manuscript.
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V. USING THE CHECKERBOARD DIAGRAM TO INFER THE PARAMETER REGIME

To narrow down the parameter regime, we match our model predictions to the experimental findings of Dunn et
al. [14] in which the authors measured the TF expression under various combinations of external signals, i.e., LIF,
CH, and PD. We aim to match the model prediction to a twelve-by-five “checkerboard diagram” which records the
experimentally measured expression pattern presented in Fig. 2 in the main text. To achieve this goal, we performed
a sweep in a vast parameter space: αm ∈ [0, 1], kon, koff ∈ [0, 110], and N = 1, 2 . . . 5. For each parameter set, we
simulated 103 PDMP sample paths for a time to sufficiently reflect the stationary state, and the average TF expression
levels were recorded. Because of the non-dimensionalization, the expression level (the population density) of each
TF is a real number in between 0 and 1. This results in a twelve-by-five real-valued matrix, which is binarized by
a threshold. To find the optimal threshold, we use the number of discrepancies between the model prediction and
the target matrix—the Hamming distance—as a quantitative measure. For each parameter set, an optimal threshold
which minimizes the Hamming distance was then found computationally, and the minimal Hamming distance was
recorded and plotted in Fig. 2 in the main text as a “landscape” of how good the model captures the experimental
results.We found that for N = 1 and N ≥ 2, the global minimal Hamming distance is 5 and 3 respectively. We chose
N = 2 to present our follow-up analysis, as it incorporates the capacity of modeling cooperative binding which is often
modeled phenomenologically. We find the Hamming distance can be constantly as small as 3 in a vast region in the
space of binding/unbinding rates when αm is small (. 0.02). Therefore, in the manuscript we present the landscape
of a fast switching regime kon ≈ 100, an intermediate regime kon ≈ 15 and a slow switching regime kon ≈ 3.

VI. VALIDATING THE PDMP AGAINST THE INDIVIDUAL-BASED MODEL

For the three selected parameter sets, 104 sample paths of a fully individual-based model were generated by standard
kinetic Monte Carlo simulations—namely Gillespie’s stochastic simulation algorithm (SSA) [2, 3]. The population
scale Ω for each TF is set to be 104. A parallel analysis is carried out and the results are consistent with the predictions
from using the PDMP. We report the results of the intermediate switching regime in Fig. 4 of the main text.

VII. VISUALIZING STOCHATIC FLUCTUATIONS IN GENE EXPRESSION ON LOW DIMENSIONAL
MANIFOLDS USING PRINCIPAL COMPONENT ANALYSIS (PCA)

While the joint probability distributions are measured by kinetic Monte Carlo sampling, the dimensionality of the
dynamical system is very high: each TF has a real-valued density, so that even if we marginalize over the genetic
states the probability density is a 12-dimensional object. Although Fig. 4 in the main text summarizes the marginal
distributions of the real-valued TF density and contains rich information, it is desirable to visualize the results in
a lower dimensional space to draw qualitative conclusions. To achieve this goal, we perform the standard principal
component analysis [15]. We chose a baseline external condition to be LIF+2i; the first two principal components
were computed. For the rest of the external conditions, the joint probability distributions are projected onto the plane
spanned by these principal components; the results are presented in Fig. 7 in the main text.

VIII. DYNAMICAL TRANSITIONS BETWEEN DIFFERENT EXTERNAL SIGNALS

To investigate dynamical transitions when the external driving conditions (whether LIF, CH, and PD are present)
change, we prepare 105 independent sample paths with an initial external condition until the joint probability dis-
tribution converges to the stationary distribution. Then, the external condition is switched instantaneously to the
second condition. We further evolve the dynamical system until stationarity for the second conditions is reached.
The results are summarized in Fig. 5 of the main text. To estimate the transition times between the stationary
distributions with different external conditions, we measure the Jensen–Shannon distance of the marginal distribution
of each TF density, at any given time during the transition to the final marginal distribution. We measure and report
the first time when all 12 distances are below a threshold value of 0.3, presented in Fig. 6 of the main text.
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