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Modeling the dynamics of oligodendrocyte precursor cells and the

genesis of gliomas: supplementary material

1. The simplified model

In order to study these oscillations, we introduced a simplified version of the model,

aiming at keeping only the characteristic features that lead to oscillations in the model,

but also in order to facilitate the derivation of the continuum limit. In this case, the

three dimensional space is discretised into sites. Each cell occupies only one site (the

cells are point-wise in this version). At each iteration, each cell can undergo either

proliferation or differentiation/death (as explained in the text, we do not distinguish

the two processes).

The proliferation rule is the same as in the full model. At each iteration, the

following procedure is repeated for each cell: one of the 6 neighboring sites (in the 3D

Von Neumann neighborhood) is chosen at random and a random number r is picked. If

r < λ and if the chosen neighboring site is free, the cell divides and a new cell is created

in the previously chosen neighboring site. If the chosen site is already occupied by a

cell, or if r ≥ λ, the cell does not divide. Since cells are point-wise, overlaps are not

possible anymore. Therefore, the density-dependent differentiation rule becomes: if the

cell has one or more neighboring sites that are occupied, the lifetime clock is triggered.

When at least two out of the 6 neighbor sites of a cell are filled with a cell (i.e when

a cell has more than two neighboring cells), the lifetime clock is triggered. After the

triggering, the cell timer increases by a unit at each iteration of the cellular automaton.

When the clock reaches the lifetime threshold (that is fixed at the beginning of the

simulation and that is the same for all the cells) D, the cell differentiates/dies.

2. The continuous equations

Cellular automaton simulations, dealing with microscopic quantities like individual cells,

are expected to be closer to reality. However they are computationally intensive, let

alone for the fact that one must perform a considerable number of simulations in

order to wash away the effect of fluctuations. It is thus intersting to seek directly

equations governing the various macroscopic quantities. These equations are usually

obtained through a coarse-graining procedure. If one considers the lattice as composed

by subdomains over which the macroscopic quantities do not fluctuate much it is possible

by proceeding to a continuum limit to obtain differential equations governing the spatial

behaviour of said quantities. Similar considerations allow one to take a continuum limit

for the time evolution.

The procedure just described, also known under the name of hydrodynamic limit,

could in principle be applied to our cellular automaton model. However in the present

case it is simpler to establish the equations of motion is a empirical way by following the

same dynamics prescription as for the cellular automaton. The first hypothesis is that
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the various macroscopic quantities do not have any spatial dependence. This is quite

plausible since in the case of the cellular automation we do not consider cell migration

and the only displacements are the ones immediately following cell fission. Thus the

macroscopic quantities will depend only on time. We first introduce the mean cell

density w(t) (corresponding to the density of occupied sites in the cellular automaton).

We assume that cells proliferate under the assumption of finite capacity and thus we

represent this mechanism by a logistic law of the form w′ = λw(1−w), where the prime

represent the derivative with respect to time and the density has been normalised so

as to have a capacity of 1. Next we assume that cell differentiation/death occurs only

when a cell enters into contact with another one and that it occurs a certain (fixed) time

after contact. Thus it is natural to distinguish those cells which have not have entered

yet into any contact and for which a first contact starts the lifetime clock. We represent

the density of the latter cells by c(t) and represent the evolution of the system w, c by

the equations

w′ = λw(1 − w) − τw̃c̃ (1a)

c′ = λw(1 − w) − τwc (1b)

where the tilde indicates a delayed term i.e. while the non-tilded terms are taken at

time t the ones with the tilde correspond to time t−D, i.e. w̃ = w(t−D). Equations

need some further explanation as far as the terms with negative sign are concerned. In

equation (1b) the term −wc represents the cells which enter into contact with others and

start the process of differentiation/death which will occur after a time D. Thus the

interaction term is taken at local time. The loss of cells through differentiation/death,

modifying the total population, is the consequence of contacts that took place previously

and thus the interaction term in (1a) is delayed by a quantity D. Moreover, by a suitable

rescaling of time (and redefinition of λ and D) we can put the strength of the interaction

term τ = 1. Thus the system (1) has just two parameters: the proliferation parameter

λ and the delay D. It is interesting to remark that by subtracting the two equations

and integrating over time we obtain the conservation-like relation

c(t) − w(t) +
∫ t

t−D
w(s)c(s)ds = 0 (2)

We proceed now to the study of the stability of the evolution equations. The

system (1) possesses two fixed points corresponding to the possible stationary regimes.

The obvious one is w∞ = 0, c∞ = 0 i.e. a totally empty space. In order to find the

second one we assume that w∞ is not zero in which case we obtain, from either (1a) or

(1b), the relation

c∞ = λ(1 − w∞) (3)

and, using equation (2), we find for w∞

Dw2
∞ − w∞(D − 1 − 1/λ) − 1 = 0 (4)

which possesses only one positive real root. In order to proceed further we assume that

the two parameters of the problem, λ and D, obey the relation 1 << 1/λ << D. In
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this case it is possible to obtain an approximate solution of (4) which, when we keep

the first few terms, leads to the expressions

w∞ = 1 − 1

λD
+

1

λD2
(5)

c∞ =
1

D
− 1

λD2
(6)

for the fixed point. It is straightforward to verify that, since λ > 0, the fixed point (0,0)

is unstable. In order to study the stability of the non-trivial fixed point, given by (4)

and the positive root of (5), we linearise (1a) and (1b) considering a small amplitude

oscillation around the fixed point. We put w = w∞ + ξ and c = c∞ + η and obtain,

using (4), the system

ξ′ = λ(1 − 2w∞)ξ − λ(1 − w∞)ξ̃ − w∞η̃ (7)

η′ = −λw∞ξ − w∞η (8)

Next we look for a solution of the form ξ = A exp(ρt), η = B exp(ρt) and obtain the

system

Aρ = λ(1 − 2w∞)A− λ(1 − w∞)Ae−ρD − w∞Be
−ρD (9)

Bρ = −λw∞A− w∞B (10)

which leads to the characteristic equation

ρ2 + ρ(λ(1 − w∞)e−ρD − λ(1 − 2w∞) + w∞) + λw∞(1 − 2w∞)(e−ρD − 1) = 0 (11)

Next we introduce the dimensionless quantity z = ρD and rewrite (11) as

z2 + zD(λ(1 − w∞)e−z − λ(1 − 2w∞) + w∞) + λD2w∞(1 − 2w∞)(e−z − 1) = 0 (12)

Equation (12) can be solved numerically once λ and D are given. However it is

interesting within the assumptions we have introduced, namely, 1 << 1/λ << D,

to obtain an approximate solution for z, using the fact that w∞ ≈ 1 − 1/(λD). At

lowest order (12) reduces to just

e−z − 1 = 0 (13)

the, lowest, non-trivial solution of which is z = 2iπ. This means that at lowest order

we have undamped oscillations with period T = D. Computing the next order in the

small parameters we find

z = − 2π2

λ2D2
+ 2iπ

(
1 − 1

λD

)
(14)

This means that we have now damped oscillations with period

T =
D

1 − 1/(λD)
(15)

We compared the period and the value of the density of occupied sites at equilibrium

w∞ when varying the lifetime clock threshold and the proliferation coefficient, between

the cellular automaton with spheres, the simplified cellular automaton and the

expression given by continuous model, equations (5) and (15), see S1 Figure.


