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1 General Notes

Units of maximal conductances and currents for all those be-
low are in mS

cm2 and µA
cm2 , respectively, and are from [Hodgkin

and Huxley, 1952], [Destexhe et al., 1993], and [Destexhe
et al., 1996] by way of [Ching et al., 2010] unless otherwise
indicated. All simulations were done with 50 TC and 50 RE
cells, and for at least 6 seconds, solved using Euler integration,
with a time resolution (dt) of 0.01 ms.

2 Intrinsic TC Cell Equations

2.1 Voltage / Membrane Potential

V̇TC = Iapplied−INa−IK−IT−IH−ILeak−IKLeak−Isyn(→TC)

Iapplied was used to model background excitation (aka “ap-
plied current”), and was therefore variable, depending on the
simulation. The bounds we investigated were roughly -2 to
2 uA
cm2 . Iapplied was always applied identically to TC and RE

cells.

2.2 Sodium Channel Current

INa = ḡNam
3h(VT − ENa)

Parameters:

VT = V + 35mV

ḡNa = 90 mScm2

ENa = 50mV

State Variable Equations: m, h

ṁ = αm · (1−m)− βm ·m ḣ = αh · (1− h)− βh · h

αm = 0.32·(13−VT )

exp(
13−VT

4 )−1
αh = 0.128 · exp( 17−VT

18 )

βm = 0.28·(VT−40)
exp(

VT−40

5 )−1
βh = 4

1+exp(
40−VT

5 )

2.3 Potassium Channel Current

IK = ḡKn
4(VT − EK)

Parameters:

VT = V + 25mV

ḡK = 10 mScm2

EK = −100mV

State Variable Equations: n

ṅ = αn · (1− n)− βn · n

αn = 0.032(15−VT )

exp(
15−VT

5 )−1

βn = 0.5exp( 10−VT

40 )

2.4 T-type Calcium Current (T-current)

IT = ḡTm
2
∞h(VT − ET )

Parameters:

VT = V + 2mV

ḡT = 2 mScm2

ET = 1000 8.31441∗309.15
2∗96486 ln 2

[Ca]i

State Variable Equations: m

m∞ = 1

1+exp(
−(VT +57)

6.2 )

State Variable Equations: h

ḣ = h∞−h
τh

h∞ = 1

1+exp(
VT +81

4 )

τh =

(
30.8 +

211.4+exp(
VT +113.2

5 )

1+exp(
VT +84

3.2 )

)
/3.73

State Variable Equations: [Ca]i

˙[Ca]i = max

(
−10·IT
2·96489 , 0

)
+ 0.00024−[Ca]i

5

2.5 Hyperpolarization-activated Current
(H-current)

IH = ḡH(o1 + 2(1− c1 − o1))(V − EH)

Note: This is the more complex [Destexhe et al., 1996]
formulation of the H-current, NOT that of [Destexhe et al.,
1993].

Parameters:

ḡH = 0.025 mScm2 (but it depends. . . ask me)

EH = −43mV
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Like Iapplied, ḡH changes depending on the simulation under
investigation. See Results for more detail.

State Variable Equations: o1, p0, c1

ȯ1 = k4(1− c1 − o1)− (k3,p0 · o1)

ṗ0 = k2(1− p0)− (k1,Ca · p0)

ċ1 = β · o1 − α · c1

k1,Ca = k2 ·
(

[Ca]i
[Ca]crit

)4

- [Ca]i is a state variable determined by the T-current.

k2 = 0.0004

k3,p0 = k4 ·
(

1−p0
0.01

)1

k4 = 0.001

[Ca]crit = 0.002 (mM of Calcium)

α = h∞
τs

β = 1−h∞
τs

h∞ = 1
1+exp(V +75

5.5 )

τs =

(
20 + 1000

/(
exp(V+71.5

14.2 ) + exp(−(V+89)
11.6 )

))
/1

2.6 Leak Currents

ILeak = ḡLeak(V − ELeak)

Parameters:

ḡLeak = 0.01 mScm2

ELeak = −70mV

IKLeak = ḡKLeak(V − EKLeak)

Parameters:

ḡKLeak = 0.0172 mScm2

EKLeak = −100mV

3 Intrinsic RE Cell Equations

3.1 Voltage / Membrane Potential

V̇RE = Iapplied− INa− IK − IT − ILeak− IKLeak− Isyn(→RE)

Iapplied was used to model background excitation (aka “ap-
plied current”), and therefore was variable, depending on the
simulation. The bounds we investigated were roughly -2 to
2 uA
cm2 . Iapplied was always applied identically to TC and RE

cells.

3.2 Sodium Current

INa = ḡNam
3h(VT − ENa)

Parameters:

VT = V + 55mV

ḡNa = 200 mScm2

ENa = 50mV

State Variable Equations: m, h

ṁ = αm · (1−m)− βm ·m ḣ = αh · (1− h)− βh · h

αm = 0.32·(13−VT )

exp(
13−VT

4 )−1
αh = 0.128 · exp( 17−VT

18 )

βm = 0.28·(VT−40)
exp(

VT−40

5 )−1
βh = 4

1+exp(
40−VT

5 )

3.3 Potassium Current

IK = ḡKn
4(VT − EK)

Parameters:

VT = V + 55mV

ḡK = 20 mScm2

EK = −100mV

State Variable Equations: n

ṅ = αn · (1− n)− βn · n

αn = 0.032(15−VT )

exp(
15−VT

5 )−1

βn = 0.5exp( 10−VT

40 )

3.4 T-type Calcium Current (T-current)

IT = ḡTm
2h(VT − ET )

Parameters:

VT = V + 4mV

ḡT = 3 mScm2

ET = 120mV

State Variable Equations: m

ṁ = m∞−m
τm

m∞ = 1

1+exp(
−(VT +50)

7.4 )

τm =

(
3 + 1

exp(
VT +25

10 )+exp(
−(VT +100)

15 )

)
/φm

φm = 6.81
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State Variable Equations: h

ḣ = h∞−h
τh

h∞ = 1

1+exp(
VT +78

5 )

τh =

(
85 + 1

exp(
VT +46

4 )+exp(
−(VT +405)

50 )

)
/φh

φh = 3.73

State Variable Equations: [Ca]i

˙[Ca]i = max

(
−10·IT
2·96489 , 0

)
+ 0.00024−[Ca]i

5

3.5 Leak Currents

ILeak = ḡLeak(V − ELeak)

Parameters:

ḡLeak = 0.05 mScm2

ELeak = −90mV

4 Synaptic Equations

4.1 Summary Equations and Connectivity

−Isyn(→TC) = −IGABAA(RE→TC)

−IGABAB(RE→TC) − IPoisson(CT→TC)

−Isyn(→RE) = −IAMPA(TC→RE)

−IGABAA(RE→RE) − IPoisson(CT→RE)

TC → RE, RE → TC, and RE → RE connections were
all-to-all. CT → TC and CT → RE connections were all-to-
all, but with a 50% connection probability. Note that there
are not true cortical (CT) cells we are explicitly modeling,
but rather we are only modeling artificial spiketrains going to
the truly Hodgkin-Huxley modeled TC and RE cells.

4.2 AMPA Current

IAMPA =
ḡAMPA

Npre
sAMPA(Vpost − EAMPA)

Parameters:

ḡAMPA(TC→RE) = 0.08 mScm2

EAMPA = 1mV

Npre = number of presynaptic cells

Note that the canonical EAMPA is usually 0 mV, however
we used 1 mV due to a bug in the code at the time. This
difference does not change our results.

State Variable Equations: sAMPA

ṡAMPA = 5(1 + tanh(
Vpre

4 ))(1− sAMPA)− sAMPA

τAMPA

τAMPA = 2ms

4.3 GABAA Current

IGABAA
=
ḡGABAA

Npre
sGABAA

(Vpost − EGABAA
)

Parameters:

ḡGABAA(RE→TC) = 0.069 mScm2

ḡGABAA(RE→RE) = 0.069 mScm2

EGABAA
= −80mV

Npre = number of presynaptic cells

State Variable Equations: sGABAA

ṡGABAA
= 2(1 + tanh(

Vpre

4 ))(1− sGABAA
)− sGABAA

τGABAA

τGABAA
= 5ms

Note that for “low-dose” propofol, we multiply ḡGABAA

and τGABAA
by 2, and for “high-dose” propofol, we multiply

ḡGABAA
and τGABAA

by 3.

4.4 GABAB Current

IGABAB
=
ḡGABAB

Npre

g4

g4 + 100
(Vpost − EGABAB

)

Note: the maximal synaptic conductance, ḡGABAB
, is dif-

ferent from the state variable of GABAB named g. Apologies
for the poor naming, but this naming is inherited and used
for historical consistency.

Parameters:

ḡGABAB(RE→TC) = 0.001 mScm2

EGABAB
= −95mV

Npre = number of presynaptic cells

State Variable Equations: r,g

ṙ = k1(2(1 + tanh(
Vpre

4 ))(1− r)− k2 · r

ġ = k3 · r − k4 · g

k1 = 0.5(mM−1ms−1)

k2 = 0.0012(ms−1)

k3 = 0.18(ms−1)

k4 = 0.034(ms−1)

This is, very slightly, an original formulation of theGABAB
current. The state variable r for GABAB is ’customized’ here,
in that, rather than the popular formulation of a 0.5 mM box
0.3 ms long for the transmitter amount, inherited from [Des-

texhe et al., 1996], the VERY similar 2(1+tanh(
Vpre

4 )) method
of calculating transmitter concentration from [Olufsen et al.,
2003] is used. 0.3 ms is about as long as a neuron’s voltage
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is above 0 mV, the latter being the definition of when this
voltage-sensitive transmitter concentration is non-zero. The
same concentration amplitude was used since I had already
seen a long time of realistic results with GABAA responding
to it, and GABAB ’s effect obviously has a much more mal-
leable effector in its maximal conductance. In many ways, this
is a simplified version of the GABAB current from [Vijayan
and Kopell, 2012]: instead of a fixed spike of transmitter con-
centration when the presynaptic cell spikes, we use the same
GABA concentration calculation method from the GABAA
current.

4.5 Artificial Poisson Cortical Spikes

These cortical spikes were made to simulate AMPAergic
spikes to thalamic populations. They were adapted from the
double-exponential synaptic model in Chapter 6 of [De Schut-
ter, 2009]. Note that we are not explicitly modeling cortical
cells, but instead creating our own spiketrains.

IPoisson =
ḡPoisson
Npre

Ge(t)(Vpost − EAMPA)

Parameters:

ḡPoisson(CT→TC) = 0.05 mScm2

ḡPoisson(CT→RE) = 0.05 mScm2

EGABAB
= 1mV

Npre = number of presynaptic cells (accounting

for 50% connection probability)

Note: due to an error in normalization of the spike genera-
tion function, the effective synaptic strength of these spikes
is tripled, meaning the final ḡPoisson that the thalamic cells
ACTUALLY see are closer to 0.15 mS

cm2 . All equations and
parameters are shown AS RUN to maintain accuracy, but the
normalization should be redone if one wants to use this Pois-
son AMPA functionality.

Functions:

Ge(t) = spiketrain · 10
2−0.5 (exp(−max(t−1,0)2 )− exp(−max(t−1,0)0.5 ))

Ge is the convolved spiketrain precalculated prior to run-
ning the simulation; the relevant data to the current step
pulled from the vector and used in the current calculation at
each step. The spiketrain is calculated by taking a matrix
of uniformly distributed data, removing all values except for
those as rare as how frequently a 12 Hz spike would happen
in proportion to the entire time length. The final Ge will be
a convolved spiketrain that is random between each ”source
cell” spiketrain.

5 Reproducibility and Code

All final simulations were run using the DynaSim software
package [Sherfey, 2016]. The individual mechanism files for

use with DynaSim are available online [Soplata, 2017b], as is a
companion download of DynaSim itself along with the mech-
anisms where the only thing you need is a copy of MATLAB,
[Soplata, 2017a]
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