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1 Original full model

Ordinary differential equations (ODEs) of the simplest model of the carrier
cycling cascade (CCC) are given as equations of mass action kinetics, as
follows:

d[m0]

dt
= kin − kb0[m0][c] + kd0[cm0]− kleak[m0], (1a)

d[cm0]

dt
= kb0[m0][c]− kd0[cm0]− kc[cm0], (1b)

d[m1]

dt
= kc[cm0]− kb1[m1][c

∗] + kd1[c
∗m0], (1c)

d[c∗m1]

dt
= kb1[m1][c

∗]− kd1[c
∗m0]− kp[c

∗m0], (1d)

d[m2]

dt
= kp[c

∗m0]− kout[m2], (1e)

d[c]

dt
= −kb0[m0][c]f + kd0[cm0] + kp[c

∗m0], (1f)

d[c∗]

dt
= −kb1[m1][c

∗]f + kd1[c
∗m0] + kc[cm0], (1g)

where mi represents the i-th metabolite, c and c∗ are the active and inactive
carriers, respectively, and [x] denotes the concentration of x. m0 and m1

can form complexes with the active and inactive carriers as cm0 and c∗m1

with the association rates kb0 and kb1, respectively, and these complexes
can decompose with the dissociation rates kd0 and kd1, respectively. Active
carriers are consumed with the rate kc when m1 is transformed from m0 and
are produced with rate kp when m2 is transformed from m1. m0 is supplied
and diluted with rates kin and kleak, respectively, and m2 is diluted with rate
kout. If we assume that kc, kp ≪ kbi, kdi, these equations can be reduced to
five ODEs, and we calculated the five-variable model.

Here, we use the parameters presented in S1 Table unless otherwise noted.
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TableS. 1: Parameters used in the simple CCC model.

Parameter Value
cpool 2.0
csum 2.0
kin 1.0
kc 1.0
kp 1.0
kleak 0.001
K0 10−3

K1 10−3

2 Reversible model

ODEs of the reversible model are given as follows:

d[m0]

dt
= kin − kc

[m0][c]

K0 + [c]
+ kr1

[m1][c
∗]

Kr1 + [c∗]
− kleak[m0], (2a)

d[m1]

dt
= kc

[m0][c]

K0 + [c]
− kr1

[m1][c
∗]

Kr1 + [c∗]
− kp

[m1][c
∗]

K1 + [c∗]
+ kr2

[m2][c]

Kr2 + [c]
, (2b)

d[m2]

dt
= kp

[m1][c
∗]

K1 + [c∗]
− kr2

[m2][c]

Kr2 + [c]
− kout[m2], (2c)

d[c]t
dt

= −kc
[m0][c]

K0 + [c]
+ kr1

[m1][c
∗]

Kr1 + [c∗]
+ kp

[m1][c
∗]

K1 + [c∗]
− kr2

[m2][c]

Kr2 + [c]
,(2d)

d[c∗]t
dt

= kc
[m0][c]

K0 + [c]
− kr1

[m1][c
∗]

Kr1 + [c∗]
− kp

[m1][c
∗]

K1 + [c∗]
+ kr2

[m2][c]

Kr2 + [c]
, (2e)

[c]t = [c] +
[m0][c]

K0 + [c]
+

[m2][c]

Kr2 + [c]
, (2f)

[c∗]t = [c∗] +
[m1][c

∗]

K1 + [c∗]
+

[m1][c
∗]

Kr1 + [c∗]
, (2g)

where kr1 and kr2 are the speed of reactions from m1 to m0 and from m2

to m1, respectively. Kr1 and Kr2 are the dissociation constants between m1

and c∗ and between m2 and c, respectively. Here, we use the parameters
presented in S2 Table.
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TableS. 2: Parameters used in the reversible model.

Parameter Value
cpool 2.0
csum 2.0
kc 1.0
kp 1.0
kr1 0.1
kr2 0.1
kleak 0.001
K0 10−3

K1 10−3

Kr1 10−3

Kr2 10−3

3 Analytical calculation of kthin

The reduced CCC model is given as:

d[m0]

dt
= kin − kc

[m0][c]

K0 + [c]
− kleak[m0], (3a)

d[m1]

dt
= kc

[m0][c]

K0 + [c]
− kp

[m1][c
∗]

K1 + [c∗]
, (3b)

[c] =
−([m0] +K0 − csum + [m1])

2

+

√
([m0] +K0 − csum + [m1])2 + 4K0(csum − [m1])

2
, (3c)

[c∗] =
−(K1 + csum − cpool)

2

+

√
(K1 + csum − cpool)2 + 4K1(cpool − csum + [m1])

2
. (3d)

Here, we obtained kth
in analytically. When kleak is zero, a nullcline for [m0]

is analytically calculated as:

[m1] = csum − kin
kc

+
K0kin

kin − kc[m0]
. (4)
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This nullcline converges into [m1] = csum − kin/kc for [m0] → ∞. Although a
nullcline for [m1] becomes too complicated, analysis of the limit of [m0] → ∞
is helpful. In these limits, the first term of the right side in Eq.(3b) becomes
kc(csum − [m1]) = kc[c]t, because the maximum speed can be obtained as
a multiplication of the turnover rate of the enzyme and the active carrier
concentration. Thus, the nullcline in the limit of [m0] → ∞ is obtained as:

[m1] =
1

2(kc + kp)

{
csum(2kc + kp)− cpoolkp − kpα

+kp

√
(cpool − csum + α)2 + 4csumα

}
, (5)

where α = kcK1/(kc + kp). Therefore, from Eqs.(4) and (5), kth
in is obtained

as:

kth
in =

kckp
2(kc + kp)

{
cpool + csum + α

+
√

(cpool − csum + α)2 + 4csumα
}
. (6)

For the limit of K1 → 0, i.e., in the case where m1 can perfectly bind to c∗

and never unbind, Eq.(6) becomes:

kth
in =

{
kckpcsum
(kc+kp)

(cpool > csum),
kckpcpool
(kc+kp)

(cpool < csum).
(7a)

4 Analytical calculation of the frequency re-

sponse of the CCC model

To obtain the frequency response analytically, we calculated the nullclines
using the large [m0] limit. Using the limit of [m0] → ∞, the speed of the
active coenzyme-consuming reaction becomes kc(csum−[m1]) = kc[c]t. There-
fore, the ODE and the nullcline for [m0] can be approximated for large [m0]
as

d[m0]

dt
≃ kin − kc(csum − [m1])− kleak[m0], (8)

[m1] ≃ kleak
kc

[m0]−
kccsum − kin

kc
, (9)
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respectively. A nullcline for [m1] in the large [m0] and small K1 limit is
calculated from Eq.(5) as

[m1] ≃
kccsum
kc + kp

=
kth
in

kp
. (10)

Therefore, from Eqs.(9) and (10), the fixed point value of [m0] is given as:

[m0]
∗ =

kin
kleak

− kckpcsum
kleak(kc + kp)

=
kin − kth

in

kleak
. (11)

When kleak is small, two nullclines are close to the fixed point, and then
the speed of change in [m0] on the nullcline for [m1] is much slower than that
approaching the nullcline and is proportional to the distance between two
nullclines. Following this, the two-dimensional dynamics (Eqs.(3a) and (3b))
can be reduced into one-dimensional dynamics of [m0] around the fixed point
as

d[m0]

dt
= −kleak

kc
[m0]−

kccsum − kin(t)

kc
+

kccsum
(kc + kp)

. (12)

When kin(t) is given as a sinusoidal function kin(t) = Ain cos(2πft) + k0
in,

[m0](t) at the steady state is calculated as

[m0](t) =
Ain[(kleak/kc) cos(2πft) + 2πf sin(2πft)]

(kleak/kc)2 + (2πf)2
+

k0
in − kth

in

kleak
. (13)

Here, the above approximations are feasible when [m0] is higher than [m0]
th =

kth
in /kc due to saturation, which is the maximal m0 concentration processed

in the first reaction per unit of time. When [m0] becomes lower than [m0]
th

due to changes in the influx rate, the fixed point is drastically changed and
the concentrations of [m1], [c]t, and [c∗]t are altered. Therefore, the cut-off
frequency is given as the frequency at which the minimal value of Eq.(13) is
the same as [m0]

th, as follows:

2πf =
kleakkcAin

kck0
in − (kc + kleak)kth

in

− kleak
kc

. (14)

The estimated cut-off frequency fits well with the result of our simula-
tion (Fig. 4B in the main text), suggesting that the complex dynamics can
be reduced into one-dimensional dynamics due to saturation, and the need
for robustness against external fluctuation is determined by the conditions
underlying this saturation.
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5 Internal fluctuation of the metabolite con-

centration

We considered the stochastic dynamics of the number of m1 molecules, n.
First, we calculated the steady-state distribution of n in a non-saturated
condition, i.e., the m0 concentration is lower than the maximal coenzyme
concentration cmax. Here, we consider the following conditions: csum < cpool
and cmax is the same as csum. Using the limits ofK0 → 0 andK1 → 0, i.e., the
metabolites bind to coenzymes perfectly, the production rate of m1 becomes
kc[m0], and the consumption rate of m1 becomes kpn when the number of m1

molecule is n. Here, only the consumption rate is proportional to n, while the
production rate is not, so that the master equation can be given as follows:

dp0
dt

= kpp1 − kc[m0]p0,

dpn
dt

= kp(n+ 1)pn+1 + kc[m0]pn−1 − (kpn+ kc[m0])pn, (15)

where pn is the probability that the number of m1 molecule is n. The steady-
state distribution is the Poisson distribution:

psn =
1

n!

(
kc[m0]

kp

)n

e
− kc[m0]

kp . (16)

Therefore, both < n > and σ2 are given as kc[m0]/kp and σ2/ < n > becomes
1, which is similar to a previously reported condition [1].

Under the saturated condition, i.e., the m0 concentration is higher than
cmax, because of coenzyme conservation, the production rate becomes kc(cmax−
n) while the consumption rate remains the same as the non-saturated condi-
tion. Here, both the production and consumption rates are proportional to
n. The master equation is thus given as follows:

dp0
dt

= kpp1 − kccmaxp0,

dpn
dt

= kp(n+ 1)pn+1 + kc(c− n+ 1)pn−1 − {kpn+ kc(c− n)} pn,(17)

dpcmax

dt
= kcpcmax−1 − kpcmaxpcmax .

The steady-state distribution is the binomial distribution:

psn =

(
cmax

n

)
Kn (1 +K)−cmax , (18)
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where K is kc/kp. The moment-generating function is given as:

G(k) =

(
1 +Kek

1 +K

)cmax

, (19)

and then,

< n > = G′(0) =
cmaxkc
kc + kp

, (20)

< n2 > = G′′(0) =
cmaxkc
kc + kp

{
1 +

(cmax − 1)kc
kc + kp

}
, (21)

σ2 =
cmaxkc
kc + kp

(
1− kc

kc + kp

)
, (22)

σ2

< n >
= 1− kc

kc + kp
. (23)

Therefore, the fluctuation can be reduced depending on the kc and kp values
(see Fig. 5B in the main text). The carrier cycling can improve the signal-
to-noise ratio by feedback regulation through the conserved concentration of
a carrier, and this effect does not depend on the concentration of a coenzyme
as long as the metabolite is saturated before the coenzyme-consuming step.
This suggests that the feedback in the CCC model can reduce the fluctuations
of the active and inactive carrier concentrations because of the conserved
quantities between [c]t and [m1].

To investigate the differences in the CCC from ordinal Michaelis-Menten
type reactions, we considered a double Michaelis-Menten model; i.e., reac-
tions fromm0 tom1 andm1 tom2 are catalyzed by different catalysts. Under
the non-saturated condition, the behavior of the double Michaelis-Menten
model is similar to that of the CCC model, and the Fano factor is approxi-
mately 1. However, under the saturated condition, the concentration of m1

shows a random walk (Fig. S6) when a similar parameter set as used for
the CCC model was used, as demonstrated in Fig. 5A in the main text. As
shown for the saturated condition, the Fano factor of the m1 concentration
never decreases in the double Michaelis-Menten model.

Furthermore, in the double Michaelis-Menten model, under the non-
saturated condition, the master equation is the same as that of the CCC
model, and a steady-state distribution is given as the Poisson distribution.
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However, under the saturated condition, the master equation is given as

dp0
dt

= kpc2p1 − kcc1p0,

dpn
dt

= kpc2pn+1 + kcc1pn−1 − {kpc2 + kcc1} pn, (24)

where c1 and c2 represent the catalysis for the first and second step reactions,
respectively. The steady-state distribution is given as

psn =

(
kcc1
kpc2

)n

ps0. (25)

Here, if kcc1/kpc2 is higher than 1, the time evolution of the number of m1 is
governed by the asymmetric random walk and the number of m1 will diverge.
If kcc1/kpc2 is 1, the time evolution of the number of m1 is governed by the
symmetric random walk from 0 to∞, as shown in S6 Fig. If kcc1/kpc2 is lower
than 1, the steady-state distribution can be given as a geometric distribution:

psn =

(
1− kcc1

kpc2

)(
kcc1
kpc2

)n

. (26)

The average and variance are:

< n > =
kcc1

kpc2 − kcc1
, (27)

σ2 =
kcc1kpc2

(kpc2 − kcc1)2
, (28)

σ2

< n >
=

kpc2
kpc2 − kcc1

=
1

1− kcc1/kpc2
> 1. (29)

Therefore, in the double Michaelis-Menten model, σ2/ < n > should be
higher than 1 in all cases.

6 Coupled carrier cycling cascade (CCCC)

model

We considered the condition in which two carrier cycling cascades are coupled
through a common coenzyme pool. Association and dissociation reactions
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between the coenzyme and substrates are eliminated adiabatically, as in the
single cascade model, and the ODEs can be given as:

d[mi
0]

dt
= ki

in − ki
c

[mi
0][c]

Ki
0 + [c]

− ki
leak[m0], (30a)

d[mi
1]

dt
= ki

c

[mi
0][c]

Ki
0 + [c]

− ki
p

[mi
1][c

∗]

Ki
1 + [c∗]

, (30b)

d[mi
2]

dt
= ki

p

[mi
1][c

∗]

Ki
1 + [c∗]

− ki
out[m

i
2], (30c)

d[c]t
dt

=
N∑
i=1

{
−ki

c

[mi
0][c]

Ki
0 + [c]

+ ki
p

[mi
1][c

∗]

Ki
1 + [c∗]

}
, (30d)

d[c∗]t
dt

=
N∑
i=1

{
ki
c

[mi
0][c]

Ki
0 + [c]

− ki
p

[mi
1][c

∗]

Ki
1 + [c∗]

}
, (30e)

[c]t = [c] +
N∑
i=1

[mi
0][c]

Ki
0 + [c]

, (30f)

[c∗]t = [c] +
N∑
i=1

[mi
1][c

∗]

Ki
1 + [c∗]

, (30g)

where i represents an index of cascade numbers. Although we set N to 2,
i.e., two CCCs are coupled (S7 Fig), the obtained results do not change for
higher N when the following conditions are satisfied.

The CCCC shows a qualitatively similar response to the environmental
changes as the CCC when one cascade is a major pathway. Here, we consid-
ered two examples:
1. c and m2

0 with a larger dissociation constant than c and m1
0.

2. The influx rate (leak rate) of m2
0 is smaller (larger) than that of m1

0.
In both cases, cascade 1 is the major cascade, and the CCCC displays re-
sponses to environmental changes in a similar way as observed for the CCC
(S8 Fig). Therefore, our findings should be applicable to more complicated
metabolic networks as well.

For these, we used the parameter set presented in S3 Table, unless oth-
erwise specified.
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TableS. 3: Parameter set used in a CCCC model

Parameter Value
cpool 2.0
csum 2.0
k2
in 1.0
k1
c 1.0

k2
c 1.0

k1
p 1.0

k2
p 1.0

k1
leak 0.001

k2
leak 0.001
K1

0 10−3

K2
0 10−3

K1
1 10−3

K2
1 10−3
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