Some relevant Kronecker product properties

Here we review the main algebraic properties, summarized in [1], that we implement to achieve fast kernel computations. In all of the below, $K_{d},(d=1, \ldots, D)$ are square invertible matrices with dimensions n_{d}.

Property 0. Associativity. The Kronecker product is associative.

$$
\left(K_{1} \otimes K_{2}\right) \otimes K_{3}=K_{1} \otimes\left(K_{2} \otimes K_{3}\right)
$$

Property 1. Inversion of the Kronecker product. The inverse of a Kronecker product equals the product of their inverses:

$$
\left(K_{1} \otimes K_{2}\right)^{-1}=K_{1}^{-1} \otimes K_{2}^{-1}
$$

Property 2. Kronecker product eigen-decomposition. If

$$
K_{1}=Q_{1} \Lambda_{1} Q_{1}^{\top}, K_{2}=Q_{2} \Lambda_{2} Q_{2}^{\top}
$$

then

$$
K_{1} \otimes K_{2}=Q \Lambda Q^{\top}
$$

where

$$
Q=Q_{1} \otimes Q_{2}, \Lambda=\Lambda_{1} \otimes \Lambda_{2}
$$

In other words, the eigen-decomposition of a Kronecker product corresponds to the product of their eigen-decompositions.

Property 3. Trace of a Kronecker product. The trace of a Kronecker product is the product of the individual traces:

$$
\operatorname{tr}\left(K_{1} \otimes K_{2}\right)=\operatorname{tr}\left(K_{1}\right) \operatorname{tr}\left(K_{2}\right)
$$

Property 4. Log determinant of the Kronecker product. The log determinant of the Kronecker product is a weighted sum of the individual log determinants, and the weights are the dimensions:

$$
\log \left|K_{1} \otimes K_{2}\right|=n_{1} \log \left|K_{1}\right|+n_{2} \log \left|K_{2}\right|
$$

Property 5. Matrix product between a Kronecker product and a vector. Let v be a $N=\prod_{d=1}^{D} n_{d}$ dimensional vector, with each n_{d} of comparable magnitude. Then

$$
\bigotimes_{d=1}^{D} K_{d} v
$$

can be computed efficiently in $O\left(D N^{(D+1) / D}\right)$ space and time. For implementation details see algorithm 2 in [2], and our code.

References

1. Saatçi Y. Scalable inference for structured Gaussian process models. University of Cambridge; 2012.
2. Gilboa E, Saatçi Y, Cunningham JP. Scaling multidimensional inference for structured Gaussian processes. Pattern Analysis and Machine Intelligence, IEEE Transactions on. 2015;37(2):424-436.
