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1 Stability of fixed points

The growth rate µ depends on the biomass synthesis rate, z, and on the con-
centrations of toxic metabolites in the culture. Since for a fixed dilution rate,
z depends only on X (cf. Eq. 6 in main text), it follows that we can write the
growth rate as a function of X and s, thus µ = µ(X, s).

In particular note that the dynamics of non-toxic metabolites can be de-
coupled from the rest of the system (cf. equations 1 and 2 in main text). It
is enough to determine the stability of a reduced system, where only X and
the concentrations si of metabolites i that are toxic intervene. In the trivial
case where there are no toxic metabolites all fixed points are stable because µ
is a non-increasing function of X. We assume that ∂µ/∂si < 0 for all toxic
metabolites i.

Let us begin by defining the velocities of change of X and si as the right-hand
sides of Eq. 1 and 2 in the main text, respectively,

F (X, s) = (µ− φD)X (1)

Gi(X, s) = −uiX − (si − ci)D (2)

A fixed point X̂, ŝ satisfies F (X̂, ŝ) = 0 and Gi(X̂, ŝ) = 0. To determine its
stability, we evaluate the Jacobian (J) of equations 1 and 2 at X̂, ŝ:
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where u′i(X̂) are the derivatives of ui(X) with respect to X, evaluated at the
fixed point. To evaluate ∂µ/∂X, recall that µ = K × z − σ, where K and σ
depend only on s, while z is a function of X (at a fixed dilution rate, cf. Eq. 6
in the main text). Therefore, it is enough to evaluate z′(X).

1.1 Computation of z′(X̂) and u′i(X̂)

Before continuing, let us make a short digression into Linear Programming [2].
To determine a basic solution of FBA, it is enough to specify: (i) the indexes
of fluxes that are away from their lower and upper bounds, and (ii) for the
remaining fluxes, whether they are equal to their lower or upper bound. This
information is called the basis [2]. The full solution can be reconstructed from
knowledge of the basis by solving the linear equality constrains. Since the basis
is a discrete object, it will remain constant as ξ varies continuously, except for
discrete ‘critical’ values of ξ where the basis changes. When the basis remains
constant, u∗i (ξ) and z∗(ξ) have the following forms:

u∗i (ξ) = αi + βi/ξ, z∗(ξ) = α+ β/ξ, (4)

where αi, βi, α, β are constant as long as the basis remains fixed. Equation 4 is
simply the generic affine dependency on the upper bounds of the uptakes (cf.
Eq. 14 in main text). Since z∗(ξ) is a non-increasing function of ξ, β ≥ 0. Using
Eq. 4, it follows that ui(X̂) = αi + βiD/X̂ and z(X̂) = α+ βD/X̂. Therefore:

ûi + u′i(X̂)X̂ = αi, z′(X̂)X̂ = −β/ξ. (5)

To obtain α, β, αi, βi, we exploit the fact that we will be computing µ∗(ξ) =
z(X∗(ξ)), u∗i (ξ) = ui(X

∗(ξ)) and X∗(ξ) over a sequence of contiguous values of
ξ. If ξ1, ξ2 are sufficiently nearby:

αi =
u∗i (ξ1)ξ1 − u∗i (ξ2)ξ2

ξ1 − ξ2
, βi= −u

∗
i (ξ1) − ui(ξ2)

ξ1 − ξ2
ξ1ξ2,

α =
z∗(ξ1)ξ1 − z∗(ξ2)ξ2

ξ1 − ξ2
, β= −z

∗(ξ1) − z∗(ξ2)

ξ1 − ξ2
ξ1ξ2.

(6)

The singular case X̂ = 0 has β = βi = 0, assuming that for very low cell
densities growth is not limited by substrate availability (i.e., that the medium
is rich; cf. discussion before Eq. 6 of the main text).

From z′(X̂) we compute ∂µ/∂X = K × z′(X̂).

1.2 Stability of the linearized system

The system is stable if the real parts of all the eigenvalues of J are negative, and
is unstable if at least one eigenvalue has a positive real part [3]. The eigenvalues
of J are:

λ± =
1

2

(
µ′(X̂)X̂ −D ±

√
(D + µ′(X̂)X̂)2 + 4X̂ω

)
, λd = −D (7)

2



where µ′(X̂) denotes the derivative ∂µ/∂X evaluated at X̂, and

ω = −
∑
i

∂µ

∂si

(
ûi + u′i(X̂)X̂

)
= −

∑
i

∂µ

∂si
αi. (8)

λd is a degenerate eigenvalue of order m−1 (where m is the number of metabo-
lites) and is always negative (we assume that D > 0). The couple λ± forms a
complex conjugate pair with negative real part if (D + µ′(X̂)X̂)2 + 4X̂ω < 0,
which implies ω < 0 < X̂. In this case the system is stable. If (D+µ′(X̂)X̂)2 +
4X̂ω ≥ 0 all the eigenvalues are real and all are negative except possibly λ+.
After some algebra, we find that λ+ < 0 (the system is stable) or λ+ > 0 (the
system is unstable) according to whether −µ′(X̂)X̂ > ξω or −µ′(X̂)X̂ < ξω,
respectively. Since ω < 0 < X̂ implies −µ′(X̂)X̂ > ξω (because µ′(X̂) ≤ 0),
the condition −µ′(X̂)X̂ > ξω is sufficient for stability, while −µ′(X̂)X̂ < ξω is
sufficient for instability, even if λ± turn out to be complex.

The critical case λ+ = 0 occurs whenever −µ′(X̂)X̂ = ξω. In this case the
stability of the system cannot be resolved by analysis of the linearized system
alone, and we must recur to the Center Manifold Theorem [1, Sec. 8.1]. As will
be shown below, in this case the system is stable. Therefore, the fixed point is
stable if −µ′(X̂)X̂ ≥ ξω and unstable if −µ′(X̂)X̂ < ξω. Since µ′(X̂)X̂ and
ω are both independent of φ (by Eq. 5), this condition does not depend on φ.
Then, whether a fixed point is stable or not can be given as a function of ξ only,
as asserted in the main text.

The condition for stability can be further simplified by noting that µ′(X̂)X̂/ξ+
ω is the derivative of µ∗(ξ) with respect to ξ. Therefore, the system is stable if
an only if µ∗(ξ) is non-increasing in a neighborhood.

1.3 Center manifold stability for the critical case (λ+ = 0)

If −µ′(X̂)X̂ = ξω all eigenvalues are real and negative except λ+ = 0. In
this case the linearized system cannot be used to determine the stability of
the fixed point, because the effect of small perturbations along the direction
of the eigenvector corresponding to λ+ (the so-called center manifold) is not
captured by the linearized system. Since only one eigenvalue has a zero real
part, the Center Manifold Theorem [1, Sec. 8.1] can be used to find a reduced
one-dimensional system where the stability can be determined. For simplicity
we will only consider the case where µ′(X̂) = αi = 0. The eigenvectors of J
then are:

p
1

=


1
0
...
0

 , p
2

=


−ξ ∂µ∂s1

1
0
...
0

 , p
3

=


−ξ ∂µ∂s2

0
1
...
0

 , . . . , p
m+1

=


−ξ ∂µ

∂sm
0
0
...
1


(9)
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where p
1

corresponds to λ+, p
2

to λ−, and the rest to λd. These eigenvectors are
assembled into a similarity matrix M (as columns), which serves to diagonalize
J:

M−1JM =


λ+ 0 0 · · · 0
0 λ− 0 · · · 0
0 0 λd · · · 0
...

...
...

. . .
...

0 0 0 · · · λd

 (10)

Introduce new variables x, z1, . . . , zm through the relation:[
X
s

]
=

[
X̂
ŝ

]
+ M

[
x
z

]
(11)

To find the reduced system, we set z = 0, which implies X = X̂ + x and s = ŝ.
Then, differentiating x with respect to time:

dx

dt
= (µ− φD)(X̂ + x) (12)

The system is stable if and only if equation 12 is stable at x = 0. We show
now that the right-hand side of equation 12 is a decreasing function of x, which
implies stability. Since si = ŝi is fixed, K,σ are constant. From Eq. 4 we know
that z = α+βD/(X̂ +x) with constant α, β for sufficiently small x. Since X̂ is
a fixed point, it follows that K(α+βD/X̂) = σ+φD. Therefore the right-hand
side of Eq. 12 is:

K

(
α+ β

D

X̂ + x
− α− β

D

X̂

)
(X̂ + x) = −Kβx/ξ (13)

which is decreasing in x. This argument breaks down if β = 0, which occurs only
in conditions of nutrient excess, where ξ is low enough that there is no nutrient
competition between the cells. In this case βi = 0 also for all i, implying that
ûi = αi is piece-wise constant in this regime. If toxic metabolites are being
secreted, ω > 0 implying −µ′(X̂)X̂ = 0 < ξω, which falls under the umbrella of
the non-critical linear stability analysis discussed above. If toxic metabolites are
not being secreted, ω = 0. But in the later case X is uncoupled from the rest
of the variables, and the system is trivially stable because µ = α is constant.

2 Alternative derivation of Equation 6 in the
main text

An alternative uptake bound used in the literature is:

ui ≤
Visi

Ki + si
(14)
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where Vi is the maximum uptake rate of metabolite i and Ki is the Michaelis-
Menten constant. Eq. (6) in the manuscript can be derived as an approximation
to equation 14. If a substrate is available in excess (si � Ki), this bound
simplifies to ui ≤ Vi. In rich media at low cell densities this is the relevant
regime. At higher cell-densities, substrates reach low levels (si � Ki), and
the bound simplifies to ui ≤ siVi/Ki. Employing the steady state metabolite
concentration from Eq. (2), si = ci − uiξ, we obtain ui ≤ (ci − uiξ)Vi/Ki, or

ui ≤
ciVi/Ki

1 + ξVi/Xi

For high cell densities ξVi/Ki � 1, and the inequality simplifies to ui ≤ ci/ξ.
Combining the bounds obtained in both regimes leads to Eq. (6) in the main
text. We prefer this form over Eq. 14 because it contains one less constant and
simplifies mathematical derivations.
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